5 resultados para Lakhi-Tor
em Indian Institute of Science - Bangalore - Índia
Resumo:
Let X(t) be a right continuous temporally homogeneous Markov pro- cess, Tt the corresponding semigroup and A the weak infinitesimal genera- tor. Let g(t) be absolutely continuous and r a stopping time satisfying E.( S f I g(t) I dt) < oo and E.( f " I g'(t) I dt) < oo Then for f e 9iJ(A) with f(X(t)) right continuous the identity Exg(r)f(X(z)) - g(O)f(x) = E( 5 " g'(s)f(X(s)) ds) + E.( 5 " g(s)Af(X(s)) ds) is a simple generalization of Dynkin's identity (g(t) 1). With further restrictions on f and r the following identity is obtained as a corollary: Ex(f(X(z))) = f(x) + k! Ex~rkAkf(X(z))) + n-1E + (n ) )!.E,(so un-1Anf(X(u)) du). These identities are applied to processes with stationary independent increments to obtain a number of new and known results relating the moments of stopping times to the moments of the stopped processes.
Resumo:
The bipolar point spread function (PSF) corresponding to the Wiener filter tor correcting linear-motion-blurred pictures is implemented in a noncoherent optical processor. The following two approaches are taken for this implementation: (1) the PSF is modulated and biased so that the resulting function is non-negative and (2) the PSF is split into its positive and sign-reversed negative parts, and these two parts are dealt with separately. The phase problem associated with arriving at the pupil function from these modified PSFs is solved using both analytical and combined analytical-iterative techniques available in the literature. The designed pupil functions are experimentally implemented, and deblurring in a noncoherent processor is demonstrated. The postprocessing required (i.e., demodulation in the first approach to modulating the PSF and intensity subtraction in the second approach) are carried out either in a coherent processor or with the help of a PC-based vision system. The deblurred outputs are presented.
Resumo:
A real-time cooperative localization system, utilizing dual foot-mounted low-cost inertial sensors and RF-based inter-agent ranging, has been developed. Scenario-based tests have been performed, using fully-equipped firefighters mimicking a search operation in a partly smoke-filled environment, to evaluate the performance of the TOR (Tactical lOcatoR) system. The performed tests included realistic firefighter movements and inter-agent distances, factors that are crucial in order to provide realistic evaluations of the expected performance in real-world operations. The tests indicate that the TOR system may be able to provide a position accuracy of approximately two to three meters during realistic firefighter operations, with only two smoke diving firefighters and one supervising firefighter within range.