119 resultados para Laguerre-Polya class
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper considers the on-line identification of a non-linear system in terms of a Hammerstein model, with a zero-memory non-linear gain followed by a linear system. The linear part is represented by a Laguerre expansion of its impulse response and the non-linear part by a polynomial. The identification procedure involves determination of the coefficients of the Laguerre expansion of correlation functions and an iterative adjustment of the parameters of the non-linear gain by gradient methods. The method is applicable to situations involving a wide class of input signals. Even in the presence of additive correlated noise, satisfactory performance is achieved with the variance of the error converging to a value close to the variance of the noise. Digital computer simulation establishes the practicability of the scheme in different situations.
Resumo:
In this article, we obtain explicit solutions of a linear PDE subject to a class of radial square integrable functions with a monotonically increasing weight function |x|(n-1)e(beta vertical bar x vertical bar 2)/2, beta >= 0, x is an element of R-n. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n > 1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.
Resumo:
This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.
Resumo:
The synthesis of three new Troger's base analogues, each functionalized with two carboxyl groups, is described. Copyright.
Resumo:
A pseudo-dynamical approach for a class of inverse problems involving static measurements is proposed and explored. Following linearization of the minimizing functional associated with the underlying optimization problem, the new strategy results in a system of linearized ordinary differential equations (ODEs) whose steady-state solutions yield the desired reconstruction. We consider some explicit and implicit schemes for integrating the ODEs and thus establish a deterministic reconstruction strategy without an explicit use of regularization. A stochastic reconstruction strategy is then developed making use of an ensemble Kalman filter wherein these ODEs serve as the measurement model. Finally, we assess the numerical efficacy of the developed tools against a few linear and nonlinear inverse problems of engineering interest.
Resumo:
A complete list of homogeneous operators in the Cowen-Douglas class B-n(D) is given. This classification is obtained from an explicit realization of all the homogeneous Hermitian holomorphic vector bundles on the unit disc under the action of the universal covering group of the bi-holomorphic automorphism group of the unit disc.
Resumo:
Cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0001.gif rule [Singh (1975)] has been suggested in the literature for finding approximately optimum strata boundaries for proportional allocation, when the stratification is done on the study variable. This paper shows that for the class of density functions arising from the Wang and Aggarwal (1984) representation of the Lorenz Curve (or DBV curves in case of inventory theory), the cum ./LSTA_A_8828879_O_XML_IMAGES/LSTA_A_8828879_O_ILM0002.gif rule in place of giving approximately optimum strata boundaries, yields exactly optimum boundaries. It is also shown that the conjecture of Mahalanobis (1952) “. . .an optimum or nearly optimum solutions will be obtained when the expected contribution of each stratum to the total aggregate value of Y is made equal for all strata” yields exactly optimum strata boundaries for the case considered in the paper.
Resumo:
The flow of a micropolar fluid in an orthogonal rheometer is considered. It is shown that an infinite number of exact solutions characterizing asymmetric motions are possible. The expressions for pressure in the fluid, the components of the forces and couples acting on the plates are obtained. The effect of microrotation on the flow is brought out by considering numerical results for the case of coaxially rotating disks.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), nonorthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time (ST) code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the orthogonal and the nonorthogonal amplify-and-forward (NAF) protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Moreover our code construction for the OAF protocol incurs less delay. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. The variable-NSDF protocol is shown to improve on the DMT of the best previously known static protocol when the number of relays is greater than two. Also included is a DMT optimal code construction for the NAF protocol.
Resumo:
We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states.
Resumo:
Collections of non-Brownian particles suspended in a viscous fluid and subjected to oscillatory shear at very low Reynolds number have recently been shown to exhibit a remarkable dynamical phase transition separating reversible from irreversible behavior as the strain amplitude or volume fraction are increased. We present a simple model for this phenomenon, based on which we argue that this transition lies in the universality class of the conserved directed percolation models. This leads to predictions for the scaling behavior of a large number of experimental observables. Non-Brownian suspensions under oscillatory shear may thus constitute the first experimental realization of an inactive-active phase transition which is not in the universality class of conventional directed percolation.
Resumo:
Brooks' Theorem says that if for a graph G,Δ(G)=n, then G is n-colourable, unless (1) n=2 and G has an odd cycle as a component, or (2) n>2 and Kn+1 is a component of G. In this paper we prove that if a graph G has none of some three graphs (K1,3;K5−e and H) as an induced subgraph and if Δ(G)greater-or-equal, slanted6 and d(G)<Δ(G), then χ(G)<Δ(G). Also we give examples to show that the hypothesis Δ(G)greater-or-equal, slanted6 can not be non-trivially relaxed and the graph K5−e can not be removed from the hypothesis. Moreover, for a graph G with none of K1,3;K5−e and H as an induced subgraph, we verify Borodin and Kostochka's conjecture that if for a graph G,Δ(G)greater-or-equal, slanted9 and d(G)<Δ(G), then χ(G)<Δ(G).
Resumo:
t - N m and sufficient computable conditions are obtained for the obsemabii of systems with linear state equations and polgwmIal outputs. Based on these, initial state reconstmctors are also described.
Resumo:
Self-tuning is applied to the minimum variance control of non-linear multivariable systems which can be characterized by a ' multivariable Hammerstein model '. It is also shown that such systems are not amenable to self-tuning control if control costing is to be included in the performance criterion.
Resumo:
Input-output stability of linear-distributed parameter systems of arbitrary order and type in the presence of a distributed controller is analyzed by extending the concept of dissipativeness, with certain modifications, to such systems. The approach is applicable to systems with homogeneous or homogenizable boundary conditions. It also helps in generating a Liapunov functional to assess asymptotic stability of the system.