103 resultados para LYSOSOMAL CYSTEINE PROTEASES

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In mammals including humans, failure in blastocyst hatching and implantation leads to early embryonic loss and infertility. Prior to implantation, the blastocyst must hatch out of its acellular glycoprotein coat, the zona pellucida (ZP). The phenomenon of blastocyst hatching is believed to be regulated by (i) dynamic cellular components such as actin-based trophectodermal projections (TEPs), and (ii) a variety of autocrine and paracrine molecules such as growth factors, cytokines and proteases. The spatio-temporal regulation of zona lysis by blastocyst-derived cellular and molecular signaling factors is being keenly investigated. Our studies show that hamster blastocyst hatching is acelerated by growth factors such as heparin binding-epidermal growth factor and leukemia inhibitory factor and that embryo-derived, cysteine proteases including cathepsins are responsible for blastocyst hatching. Additionally, we believe that cyclooxygenase-generated prostaglandins, estradiol-17 beta mediated estrogen receptor-alpha signaling and possibly NF kappa B could be involved in peri-hatching development. Moreover, we show that TEPs are intimately involved with lysing ZP and that the TEPs potentially enrich and harbor hatching-enabling factors. These observations provide new insights into our understanding of the key cellular and molecular regulators involved in the phenomenon of mammalian blastocyst hatching, which is essential for the establishment of early pregnancy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS).Methodology/Principal Findings: Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Conclusions/Significance: Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the biology of this neglected disease, our study is the first step towards identification of diagnostic biomarkers, novel drug targets as well as potential vaccine candidates to fight against T. evansi infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanosoma evansi is a causative agent of `surra', a common haemoprotozoan disease of livestock in India causing high morbidity and mortality in disease endemic areas. The proteinases released by live and dead trypanosomes entail immunosuppression in the infected host, which immensely contribute in disease pathogenesis. Cysteine proteinases are identified in the infectious cycle of trypanosomes such as cruzain from Trypanosoma cruzi, rhodesain or brucipain from Trypanosoma brucei rhodesiense and congopain from Trypanosoma congelense. These enzymes localised in lysosome-like organelles, flagellar pocket and on cell surface, which play a critical role in the life cycle of protozoan parasites, viz. in host invasion, nutrition and alteration of the host immune response. The paper describes the identification of cysteine proteinases of T. evansi lysate, activity profile at different pH optima and inhibition pattern using a specific inhibitor, besides the polypeptide profile of an antigen. Eight proteinases of T. evansi were identified in the molecular weight (MW) ranges of 28-170 kDa using gelatin substrate-polyacrylamide gel electrophoresis (GS-PAGE), and of these proteinases, six were cysteine proteinases, as they were inhibited by L-3-carboxy-2,3-transepoxypropionyl-lecuylamido (4-guanidino)-butane (E-64), a specific inhibitor. These proteolytic enzymes were most reactive in acidic pH between 3.0 and 5.5 in the presence of dithiothreitol and completely inactive at alkaline pH 10.0. Similarly, the GS-PAGE profile of the serum samples of rats infected with T. evansi revealed strong proteolytic activity only at the 28-kDa zone at pH 5.5, while no proteolytic activity was observed in serum samples of uninfected rats. Further, the other zones of clearance, which were evident in T. evansi antigen zymogram, could not be observed in the serum samples of rats infected with T. evansi. The polypeptide pattern of the whole cell lysate antigen revealed 12-15 polypeptide bands ranging from 28 to 81 kDa along with five predominant polypeptides bands (MW of 81, 66, 62, 55 and 45 kDa), which were immunoreactive with hyperimmune serum (HIS) and serum of experimentally infected rabbits with T. evansi infection. The immunoblot recognised antibodies in experimentally infected rabbits and against HIS as well, corresponding to the zone of clearances at lower MW ranges (28-41 kDa), which may be attributed to the potential of these proteinases in the diagnosis of T. evansi infection. Since these thiol-dependent enzymes are most active in acidic pH and considering their inhibition characteristics, these data suggest that they resemble to the mammalian lysosomal cathepsin B and L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W I and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the addition of different concentratons of cystine and cysteine on sporulation and parasporal crystal formation in Bacillus thuringiensis var. thuringiensis was studied. The effect was well pronounced when the systine/cysteine additions were made after the stationary phase. Heat stable spores and crystals were formed when the culture was provided with a low concentration of cystine/cysteine (0.05 per cent w/v). At a moderate concentration of cystine or cysteine (0.15%), only heat labile spores were formed without the production of the crystal. When the cystine/cysteine concentration was high (0.25%), spore and crystal formation were completely inhibited. Partial reversal of inhibition of sporulation was brought about by sodium sulphate or zinc sulphate and lead, copper, cadmium or cobalt acetate at 0.2 mM or at 0.2% of sodium or potassium pyruvate, citrate, isaconitate, oxalosuccinate, ∝ -keto-glutarate, succinate, fumarate, malate, or oxalacetate. Glutamate (0.2%) overcame the inhibitory effect of cystine/cysteine completely. The structural changes observed using phase contrast microscopy were dependent upon the concentration of cystine/cysteine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most severe form of malaria that is fatal in many cases. Emergence of drug resistant strains of P. falciparum requires that new drug targets be-identified. This review considers in detail enzymes of the glycolytic pathway, purine salvage pathway, pyrimidine biosynthesis and proteases involved in catabolism of haemoglobin. Structural features of P. falciparum triosephosphate isomerase which could be exploited for parasite specific drug development have been highlighted. Utility of P. falciparum hypoxanthine-guanine-phosphoribosyltransferase, adenylosuccinate synthase, dihydroorotate dehydrogenase, thymidylate synthase-dihydrofolate reductase, cysteine and aspartic proteases have been elaborated in detail. The review also briefly touches upon other potential targets in P. falciparum

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting interaction between glyoxylate and cystein takes place in phosphate buffer (pH 7.0) to form a product which is resistant to hydrolysis at ordinary temperatures. The reaction product is broken up by acid hydrolysis at elevated temperatures under controlled conditions, giving a quantitive yield of glyoxylate. Other keto acids, such as α-ketoglutarate, pyruvate and oxaloacetate, do not interact with cysteine under similar conditions. Methods based on these findings are described for(a) direct estimation of other keto acids in the presence of glyoxylate, and (b) assay of isocitritase and glyoxylate transaminase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphate-inhibitable neutral protease activity of the heavy mitochondrial fraction of rat liver is of lysosomal origin. The activity is essentially due to the thiol proteinases of the lysosomes. Digitonin treatment of the mitochondrial fraction results in the release of about 85 per cent of the neutral protease activity and the residual activity has an alkaline pH optimum and is not inhibited by phosphate. Clofibrate feeding at 0.5 per cent level in the diet results in enhanced levels of lysosomal enzymes. The increase is however restricted to the lysosome-rich fraction such that the activities associated with the heavy mitochondrial fraction show a significant decrease. It is suggested that clofibrate inhibits engulfment of mitochondria by lysosomes and this results in enhanced mitochondrial protein content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The critical, and often most difficult, step in structure elucidation of diverse classes of natural peptides is the determination of correct disulfide pairing between multiple cysteine residues. Here, we present a direct mass spectrometric analytical methodology for the determination of disulfide pairing. Protonated peptides, having multiple disulfide bonds, fragmented under collision induced dissociation (CID) conditions and preferentially cleave along the peptide backbone, with occasional disulfide fragmentation either by C-beta-S bond cleavage through H-alpha abstraction to yield dehydroalanine and cysteinepersulfide, or by S-S bond cleavage through H-beta abstraction to yield the thioaldehyde and cysteine. Further fragmentation of the initial set of product ions (MSn) yields third and fourth generation fragment ions, permitting a distinction between the various possible disulfide bonded structures. This approach is illustrated by establishing cysteine pairing patterns in five conotoxins containing two disulfide bonds. The methodology is extended to the Conus araneosus peptides An 446 and Ar1430, two 14 residue sequences containing 3 disulfide bonds. A distinction between 15 possible disulfide pairing schemes becomes possible using direct mass spectral fragmentation of the native peptides together with fragmentation of enzymatically nicked peptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microporous polybenzimidazole (PBI) of 250–500 μm bead size has been epoxidized and subsequently reacted with l-cysteine in the presence of a phase-transfer catalyst at room temperature to obtain a sorbent having anchored l-cysteine, EPBI(Cyst). The sorption of Cu(II), Ni(II), Co(II), and Zn(II) in mildly acidic and ammoniacal solutions has been measured under comparable conditions on EPBI(Cyst) and Dowex 50W-X8(H+) resins. While the latter shows no appreciable difference in sorption of the four metals in acidic and ammoniacal media and has 40–60 % selectivity for copper(II) over the other three, EPBI(Cyst) shows a threefold increase in copper sorption and more than 90% copper selectivity over the other metals in ammoniacal media, compared to mildly acidic media. The copper binding constant and saturation capacity of EPBI(Cyst) in ammoniacal media decrease only slowly beyond pH 11.6 with the result that the resin shows significant sorption of Cu(II) even in strongly ammoniacal solutions. The sorbed copper is stripped with HCl relatively easily. The copper sorption kinetics on EPBI(Cyst) is unusually fast in ammoniacal media with more than 90 % of equilibrium sorption being attained in one minute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topological disposition of Wolfgram proteins (WP) and their relationship with 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in human, rat, sheep, bovine, guinea pig and chicken CNS myelin was investigated. Controlled digestion of myelin with trypsin gave a 35KDa protein band (WP-t) when electrophoresed on dodecyl sulfate-polyacrylamide gel in all species. Western blot analysis showed that the WP-t was derived from WP. WP-t was also formed when rat myelin was treated with other proteases such as kallikrein, thermolysin and leucine aminopeptidase. Staining for CNPase activity on nitrocellulose blots showed that WP-t is enzymatically active. Much of the CNPase activity remained with the membrane fraction even after treatment with high concentrations of trypsin when WP were completely hydrolysed and no protein bands with M.W > 14KDa were detected on the gels. Therefore protein fragments of WP with M.W < 14KDa may contain CNPase activity. From these results, it is suggested that the topological disposition of all the various WP is such that a 35KDa fragment is embedded in the lipid bilayer and the remaining fragment exposed at the intraperiod line in the myelin structure which may play a role in the initiation of myelinogenesis.