4 resultados para LEY 222 DE 1995
em Indian Institute of Science - Bangalore - Índia
Resumo:
Abundant quantities of fly ash have been produced by thermal power plants situated ail over the world. Many applications of fly ash depend upon its pozzolanic reactivity. This reactivity depends upon many factors, including lime content. Many fly ashes show marked improvement with the addition of lime. However, for every fly ash, there is an optimum lime content for its maximum reactivity. There is no well-established simple test to determine the optimum lime content. In this paper an attempt is made to use a simple physical and physico chemical test to determine the optimum lime content. The principle behind the use of a pH test, liquid limit test, and free swell index test to determine the optimum lime content has been explained. All the methods predict nearly the same optimum lime content and correlate well with that determined by the strength test.
Resumo:
Dynamics of I*(P-2(1/2)) formation from CH2ICl dissociation has-been investigated at five different ultraviolet excitation wavelengths, e.g., 222, 236, 266, 280, and similar to304 nm. The quantum yield of I*((2)p(1/2)) production, phi*, has been measured by monitoring nascent I(P-2(3/2)) and I* concentrations using a resonance enhanced multiphoton ionization detection scheme. The measured quantum yield as a function of excitation energy follows the same trend as that of methyl iodide except at 236 run. The photodissociation dynamics of CH2ICl also involves three upper states similar to methyl iodide, and a qualitative correlation diagram has been constructed to account for the observed quantum yield. From the difference in behavior at 236 nm, it appears that the crossing region between the two excited states ((3)Q(0) and (1)Q(1)) is located near the exit valley away from the Franck Condon excitation region. The B- and C-band transitions do not participate in the dynamics, and the perturbation of the methyl iodide states due to Cl-I interaction is relatively weak at the photolysis wavelengths employed in this investigation.