3 resultados para LAMPS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Bixbyite type Y2O3:Eu3+ apart from being the efficient red phosphor extensively used in trichromatic fluorescent lamps, it is a typical system one can apply Jorgensen's refined electron spin pairing theory. This can be used to explain the enhancement in Eu3+ emission intensity observed with the aliovalent substitution in the yttria host matrix. Results based on these are explained qualitatively by considering a simple configurational coordinate model. Futhermore, an insight into the different types of defects induced with the aliovalent substitution in the yttria lattice has become possible with EPR probe.
Resumo:
The photocatalytic inactivation of Escherichia coil was studied with combustion synthesized TiO2 photocatalysts in the presence of visible light. A series of 400W lamps irradiating in the visible region of the solar spectrum was used. The effect of various parameters, such as catalyst loading, light intensity, presence of inorganic ions, addition of hydrogen peroxide and pH, on the photocatalytic inactivation of E. coil was investigated. Photolysis alone had a small effect on inactivation while the dark experiment resulted in no inactivation and Ag/TiO2 showed the maximum inactivation. At a catalyst loading of 0.25 g/L, all the combustion synthesized catalysts showed better inactivation of E. coil compared to commercial Degussa P-25 (DP-25) TiO2 catalyst. An improved inactivation was observed with increasing lamp intensity and addition of H2O2. A negative effect on inactivation was observed by addition of inorganic ions such as HCO3-, SO42-, Cl-, NO3-, Na+, K+ and Ca2+. The photocatalytic inactivation of E. coli remained unaltered at different pH of the solution. The inactivation of E. coli was modeled with power law kinetics and was observed to follow first order kinetics. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Carbon Nanotubes (CNTs) grown on substrates are potential electron sources in field emission applications. Several studies have reported the use of CNTs in field emission devices, including field emission displays, X-ray tube, electron microscopes, cathode-ray lamps, etc. Also, in recent years, conventional cold field emission cathodes have been realized in micro-fabricated arrays for medical X-ray imaging. CNTbased field emission cathode devices have potential applications in a variety of industrial and medical applications, including cancer treatment. Field emission performance of a single isolated CNT is found to be remarkable, but the situation becomes complex when an array of CNTs is used. At the same time, use of arrays of CNTs is practical and economical. Indeed, such arrays on cathode substrates can be grown easily and their collective dynamics can be utilized in a statistical sense such that the average emission intensity is high enough and the collective dynamics lead to longer emission life. The authors in their previous publications had proposed a novel approach to obtain stabilized field emission current from a stacked CNT array of pointed height distribution. A mesoscopic modeling technique was employed, which took into account electro-mechanical forces in the CNTs, as well as transport of conduction electron coupled with electron phonon induced heat generation from the CNT tips. The reported analysis of pointed arrangements of the array showed that the current density distribution was greatly localized in the middle of the array, the scatter due to electrodynamic force field was minimized, and the temperature transients were much smaller compared to those in an array with random height distribution. In the present paper we develop a method to compute the emission efficiency of the CNT array in terms of the amount of electrons hitting the anode surface using trajectory calculations. Effects of secondary electron emission and parasitic capacitive nonlinearity on the current-voltage signals are accounted. Field emission efficiency of a stacked CNT array with various pointed height distributions are compared to that of arrays with random and uniform height distributions. Effect of this parasitic nonlinearity on the emission switch-on voltage is estimated by model based simulation and Monte Carlo method.