31 resultados para LABORATORY
em Indian Institute of Science - Bangalore - Índia
Resumo:
A mathematician tends to have an intense relationship with treatises – one which is more akin to that of a historian than that of her colleagues in the ‘hard’ sciences. A book may be a century or two old and still be relevant as a source of information or inspiration, well-thumbed textbooks from youth might be still consulted decades later, and fierce arguments rage about relative merits of different treatments of the same subject. And much like any book-lover, a mathematician is forever arguing with herself whether she can afford to buy this volume or the other. When the price label is in dollars or euros and the salary paid in rupees, this last dilemma is particularly acute.
Resumo:
In the education of physical sciences, the role of the laboratory cannot be overemphasised. It is the laboratory exercises which enable the student to assimilate the theoretical basis, verify the same through bench-top experiments, and internalize the subject discipline to acquire mastery of the same. However the resources essential to put together such an environment is substantial. As a result, the students go through a curriculum which is wanting in this respect. This paper presents a low cost alternative to impart such an experience to the student aimed at the subject of switched mode power conversion. The resources are based on an open source circuit simulator (Sequel) developed at IIT Mumbai, and inexpensive construction kits developed at IISc Bangalore. The Sequel programme developed by IIT Mumbai, is a circuit simulation program under linux operating system distributed free of charge. The construction kits developed at IISc Bangalore, is fully documented for anyone to assemble these circuit which minimal equipment such as soldering iron, multimeter, power supply etc. This paper puts together a simple forward dc to dc converter as a vehicle to introduce the programming under sequel to evaluate the transient performance and small signal dynamic model of the same. Bench tests on the assembled construction kit may be done by the student for study of operation, transient performance and closed loop stability margins etc.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.
Resumo:
Combustion is a complex phenomena involving a multiplicity of variables. Some important variables measured in flame tests follow [1]. In order to characterize ignition, such related parameters as ignition time, ease of ignition, flash ignition temperature, and self-ignition temperature are measured. For studying the propagation of the flame, parameters such as distance burned or charred, area of flame spread, time of flame spread, burning rate, charred or melted area, and fire endurance are measured. Smoke characteristics are studied by determining such parameters as specific optical density, maximum specific optical density, time of occurrence of the densities, maximum rate of density increase, visual obscuration time, and smoke obscuration index. In addition to the above variables, there are a number of specific properties of the combustible system which could be measured. These are soot formation, toxicity of combustion gases, heat of combustion, dripping phenomena during the burning of thermoplastics, afterglow, flame intensity, fuel contribution, visual characteristics, limiting oxygen concentration (OI), products of pyrolysis and combustion, and so forth. A multitude of flammability tests measuring one or more of these properties have been developed [2]. Admittedly, no one small scale test is adequate to mimic or assess the performance of a plastic in a real fire situation. The conditions are much too complicated [3, 4]. Some conceptual problems associated with flammability testing of polymers have been reviewed [5, 6].
Resumo:
Sr90 Radiotracer diffusion studies have been carried out on crystals of orthoclase and microcline using an ion implantation method. The activation energies are consistent with calculations based on mineral age data.
Resumo:
We studied the mating behaviour of the primi-tively eusocial wasp Ropalidia marginata and the factors that may influence sperm transfer. By introducing a male and a female R. marginata into ventilated transparent plastic boxes, we were able to observe mating behaviour, and it involved mounting and short or long conjugation of the wasps. Dissection of female wasps after the observation indicated that long conjugation is a good behavioural predictor of sperm transfer. This finding makes it possible to obtain mated females without dissecting them every time. We tested the effect of age, season, relatedness, body size and female's ovarian status on mating. Under laboratory conditions, mating success declined rapidly below and above the ages 5-20 days. Within this age range mating success was significantly low in December compared to other months tested. There was no nestmate discrimination, and there was no influence of male and female body size or of the ovarian state of the female on the probability of sperm transfer.
Resumo:
Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.
Resumo:
In this paper, we present the study and implementation of a low-cost system to detect the occurrences of tsunamis at significantly smaller laboratory scale. The implementation is easily scalable for real-time deployment. Information reported in this paper includes the experimentally recorded response from the pressure sensor giving an indication as well as an alarm at remote place for the detection of water turbulence similar to the case of tsunami. It has been found that the system developed works very well in the laboratory scale.
Resumo:
Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill-posed due to various reasons, and hence the parameters become non-unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non-linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one-dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm(3) cm(-3). It is found from the two experiments that mean and uncertainty in the saturated soil moisture (theta(s)) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Marked-ball grinding tests were carried out under different grinding conditions and environments. Three types of balls were used, namely, cast hyper steel, high chrome cast iron and EN-31 (forged), which cover a wide range of chemical composition, microstructure and media hardness. The effect of pulp density on ball wear and grinding efficiency was also studied. Relative pulp viscosities at different percent solids for the ore slurry were also determined. As the Kudremukh ore contained about 0.2% pyrite, the effect of addition of pyrite on ball wear was studied separately. Results of marked-ball grinding tests indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. At 70% solids, the best results in terms of reduced ball wear coupled with satisfactory grinding efficiency were obtained. The influence of oxygen on the corrosive wear of grinding balls was increasingly felt only if sulphide minerals such as pyrite were also present in the ore. The various ball materials could be arranged in the following order with respect to their overall wear resistance: high chrome cast iron > EN-31 (forged) > cast hyper steel.Possible ball wear mechanisms involved in the grinding of Kudremukh ore are discussed.
Resumo:
Wear of high carbon low alloy (HCLA) cast steel balls during the grinding of a chalcopyrite ore was evaluated under different experimental conditions. The role of oxygen in enhancing ball wear during wet finding is brought out. The influence of pH on ball wear was also examined from the view point of acid production during grinding and reactivity of sulphides. Contributions from corrosion and abrasion towards ball wear are quantified in terms of ball wear rates as a function of time, particle size and gaseous atmosphere in the mill.
Resumo:
Reported distress to an industrial structure from phosphate/sulfate contamination of kaolinitic foundation soil at an industrial location in Southern India prompted this laboratory study. The study examines the short-term effect of sodium sulfate/phosphate contamination on the swell/compression characteristics of a commercial kaolinite. Experimental results showed that the unsaturated contaminated kaolinite specimens exhibited slightly higher swell potentials and lower compressions than the unsaturated uncontaminated kaolinite specimens. It is suggested that the larger double layer promoted by the increased exchangeable sodium ion concentration is responsible for the slightly higher swell potentials and lower compressions of the unsaturated contaminated kaolinite specimens.