24 resultados para Kyoto

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single Hidden Markov Model. It is shown that such a solution is possible by aligning the K patterns using the proposed Multi Pattern Dynamic Time Warping algorithm followed by the Constrained Multi Pattern Viterbi Algorithm The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB Signal to Noise Ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Clean Development Mechanism (CDM), Article 12 of the Kyoto Protocol allows Afforestation and Reforestation (A/R) projects as mitigation activities to offset the CO2 in the atmosphere whilst simultaneously seeking to ensure sustainable development for the host country. The Kyoto Protocol was ratified by the Government of India in August 2002 and one of India's objectives in acceding to the Protocol was to fulfil the prerequisites for implementation of projects under the CDM in accordance with national sustainable priorities. The objective of this paper is to assess the effectiveness of using large-scale forestry projects under the CDM in achieving its twin goals using Karnataka State as a case study. The Generalized Comprehensive Mitigation Assessment Process (GCOMAP) Model is used to observe the effect of varying carbon prices on the land available for A/R projects. The model is coupled with outputs from the Lund-Potsdam-Jena (LPJ) Dynamic Global Vegetation Model to incorporate the impacts of temperature rise due to climate change under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2, A1B and B1. With rising temperatures and CO2, vegetation productivity is increased under A2 and A1B scenarios and reduced under B1. Results indicate that higher carbon price paths produce higher gains in carbon credits and accelerate the rate at which available land hits maximum capacity thus acting as either an incentive or disincentive for landowners to commit their lands to forestry mitigation projects. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. This paper addresses these challenges. Historically, the responsibility for greenhouse gas emissions' increase lies largely with the industrialized world, though the developing countries are likely to be the source of an increasing proportion of future emissions. The projected climate change under various scenarios is likely to have implications on food production, water supply, coastal settlements, forest ecosystems, health, energy security, etc. The adaptive capacity of communities likely to be impacted by climate change is low in developing countries. The efforts made by the UNFCCC and the Kyoto Protocol provisions are clearly inadequate to address the climate change challenge. The most effective way to address climate change is to adopt a sustainable development pathway by shifting to environmentally sustainable technologies and promotion of energy efficiency, renewable energy, forest conservation, reforestation, water conservation, etc. The issue of highest importance to developing countries is reducing the vulnerability of their natural and socio-economic systems to the projected climate change. India and other developing countries will face the challenge of promoting mitigation and adaptation strategies, bearing the cost of such an effort, and its implications for economic development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

in this short note, we determine precisely which operators have the property that their (full, symmetric or antisymmetric) second quantisation is an operator which is bounded or belongs to one of the various Schatten ideals; we also note that in 'the interior' of the natural domain, the second quantisation is a continuous map.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently in, a framework was given to construct low ML decoding complexity Space-Time Block Codes (STBCs) via codes over the finite field F4. In this paper, we construct new full-diversity STBCs with cubic shaping property and low ML decoding complexity via codes over F4 for number of transmit antennas N = 2m, m >; 1, and rates R >; 1 complex symbols per channel use. The new codes have the least ML decoding complexity among all known codes for a large set of (N, R) pairs. The new full-rate codes of this paper (R = N) are not only information-lossless and fully diverse but also have the least known ML decoding complexity in the literature. For N ≥ 4, the new full-rate codes are the first instances of full-diversity, information-lossless STBCs with low ML decoding complexity. We also give a sufficient condition for STBCs obtainable from codes over F4 to have cubic shaping property, and a sufficient condition for any design to give rise to a full-diversity STBC when the symbols are encoded using rotated square QAM constellations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy Harvesting (EH) nodes, which harvest energy from the environment in order to communicate over a wireless link, promise perpetual operation of a wireless network with battery-powered nodes. In this paper, we address the throughput optimization problem for a rate-adaptive EH node that chooses its rate from a set of discrete rates and adjusts its power depending on its channel gain and battery state. First, we show that the optimal throughput of an EH node is upper bounded by the throughput achievable by a node that is subject only to an average power constraint. We then propose a simple transmission scheme for an EH node that achieves an average throughput close to the upper bound. The scheme's parameters can be made to account for energy overheads such as battery non-idealities and the energy required for sensing and processing. The effect of these overheads on the average throughput is also analytically characterized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a family/sequence of Space-Time Block Codes (STBCs) C1, C2,⋯, with increasing number of transmit antennas Ni, with rates Ri complex symbols per channel use (cspcu), i = 1,2,⋯, the asymptotic normalized rate is defined as limi→∞ Ri/Ni. A family of STBCs is said to be asymptotically-good if the asymptotic normalized rate is non-zero, i.e., when the rate scales as a non-zero fraction of the number of transmit antennas, and the family of STBCs is said to be asymptotically-optimal if the asymptotic normalized rate is 1, which is the maximum possible value. In this paper, we construct a new class of full-diversity STBCs that have the least maximum-likelihood (ML) decoding complexity among all known codes for any number of transmit antennas N>;1 and rates R>;1 cspcu. For a large set of (R,N) pairs, the new codes have lower ML decoding complexity than the codes already available in the literature. Among the new codes, the class of full-rate codes (R=N) are asymptotically-optimal and fast-decodable, and for N>;5 have lower ML decoding complexity than all other families of asymptotically-optimal, fast-decodable, full-diversity STBCs available in the literature. The construction of the new STBCs is facilitated by the following further contributions of this paper: (i) Construction of a new class of asymptotically-good, full-diversity multigroup ML decodable codes, that not only includes STBCs for a larger set of antennas, but also either matches in rate or contains as a proper subset all other high-rate or asymptotically-good, delay-optimal, multigroup ML decodable codes available in the literature. (ii) Construction of a new class of fast-group-decodable codes (codes that combine the low ML decoding complexity properties of multigroup ML decodable codes and fast-decodable codes) for all even number of transmit antennas and rates 1 <; R ≤ 5/4.- - (iii) Given a design with full-rank linear dispersion matrices, we show that a full-diversity STBC can be constructed from this design by encoding the real symbols independently using only regular PAM constellations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This lecture describes some recent attempts at unravelling the mechanics of the temperature distribution near ground, especially during calm, clear nights. In particular, a resolution is offered of the so-called Ramdas paradox, connected with observations of a temperature minimum some decimetres above bare soil on calm clear nights, in apparent defiance of the Rayleigh criterion for instability due to thermal convection. The dynamics of the associated temperature distribution is governed by radiative and convective transport and by thermal conduction, and is characterised by two time constants, involving respectively quick radiative adjustments and slow diffusive relaxation. The theory underlying the work described here suggests that surface parameters like ground emissivity and soil thermal conductivity can exert appreciable influence on the development of nocturnal inversions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of phase retrieval, which is frequently encountered in optical imaging. The measured quantity is the magnitude of the Fourier spectrum of a function (in optics, the function is also referred to as an object). The goal is to recover the object based on the magnitude measurements. In doing so, the standard assumptions are that the object is compactly supported and positive. In this paper, we consider objects that admit a sparse representation in some orthonormal basis. We develop a variant of the Fienup algorithm to incorporate the condition of sparsity and to successively estimate and refine the phase starting from the magnitude measurements. We show that the proposed iterative algorithm possesses Cauchy convergence properties. As far as the modality is concerned, we work with measurements obtained using a frequency-domain optical-coherence tomography experimental setup. The experimental results on real measured data show that the proposed technique exhibits good reconstruction performance even with fewer coefficients taken into account for reconstruction. It also suppresses the autocorrelation artifacts to a significant extent since it estimates the phase accurately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated image segmentation techniques are useful tools in biological image analysis and are an essential step in tracking applications. Typically, snakes or active contours are used for segmentation and they evolve under the influence of certain internal and external forces. Recently, a new class of shape-specific active contours have been introduced, which are known as Snakuscules and Ovuscules. These contours are based on a pair of concentric circles and ellipses as the shape templates, and the optimization is carried out by maximizing a contrast function between the outer and inner templates. In this paper, we present a unified approach to the formulation and optimization of Snakuscules and Ovuscules by considering a specific form of affine transformations acting on a pair of concentric circles. We show how the parameters of the affine transformation may be optimized for, to generate either Snakuscules or Ovuscules. Our approach allows for a unified formulation and relies only on generic regularization terms and not shape-specific regularization functions. We show how the calculations of the partial derivatives may be made efficient thanks to the Green's theorem. Results on synthesized as well as real data are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edge-preserving smoothing is widely used in image processing and bilateral filtering is one way to achieve it. Bilateral filter is a nonlinear combination of domain and range filters. Implementing the classical bilateral filter is computationally intensive, owing to the nonlinearity of the range filter. In the standard form, the domain and range filters are Gaussian functions and the performance depends on the choice of the filter parameters. Recently, a constant time implementation of the bilateral filter has been proposed based on raisedcosine approximation to the Gaussian to facilitate fast implementation of the bilateral filter. We address the problem of determining the optimal parameters for raised-cosine-based constant time implementation of the bilateral filter. To determine the optimal parameters, we propose the use of Stein's unbiased risk estimator (SURE). The fast bilateral filter accelerates the search for optimal parameters by faster optimization of the SURE cost. Experimental results show that the SURE-optimal raised-cosine-based bilateral filter has nearly the same performance as the SURE-optimal standard Gaussian bilateral filter and the Oracle mean squared error (MSE)-based optimal bilateral filter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of human detection is challenging, more so, when faced with adverse conditions such as occlusion and background clutter. This paper addresses the problem of human detection by representing an extracted feature of an image using a sparse linear combination of chosen dictionary atoms. The detection along with the scale finding, is done by using the coefficients obtained from sparse representation. This is of particular interest as we address the problem of scale using a scale-embedded dictionary where the conventional methods detect the object by running the detection window at all scales.