30 resultados para Knowledge organization systems
em Indian Institute of Science - Bangalore - Índia
Resumo:
Many knowledge based systems (KBS) transform a situation information into an appropriate decision using an in built knowledge base. As the knowledge in real world situation is often uncertain, the degree of truth of a proposition provides a measure of uncertainty in the underlying knowledge. This uncertainty can be evaluated by collecting `evidence' about the truth or falsehood of the proposition from multiple sources. In this paper we propose a simple framework for representing uncertainty in using the notion of an evidence space.
Resumo:
Assembly is an important part of the product development process. To avoid potential issues during assembly in specialized domains such as aircraft assembly, expert knowledge to predict such issues is helpful. Knowledge based systems can act as virtual experts to provide assistance. Knowledge acquisition for such systems however, is a challenge, and this paper describes one part of an ongoing research to acquire knowledge through a dialog between an expert and a knowledge acquisition system. In particular this paper discusses the use of a situation model for assemblies to present experts with a virtual assembly and help them locate the specific context of the knowledge they provide to the system.
Resumo:
In the domain of manual mechanical assembly, expert knowledge is an important means of supporting assembly planning that leads to fewer issues during actual assembly. Knowledge based systems can be used to provide assembly planners with expert knowledge as advice. However, acquisition of knowledge remains a difficult task to automate, while manual acquisition is tedious, time-consuming, and requires engagement of knowledge engineers with specialist knowledge to understand and translate expert knowledge. This paper describes the development, implementation and preliminary evaluation of a method that asks a series of questions to an expert, so as to automatically acquire necessary diagnostic and remedial knowledge as rules for use in a knowledge based system for advising assembly planners diagnose and resolve issues. The method, called a questioning procedure, organizes its questions around an assembly situation which it presents to the expert as the context, and adapts its questions based on the answers it receives from the expert. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.
Resumo:
The paper deals with a model-theoretic approach to clustering. The approach can be used to generate cluster description based on knowledge alone. Such a process of generating descriptions would be extremely useful in clustering partially specified objects. A natural byproduct of the proposed approach is that missing values of attributes of an object can be estimated with ease in a meaningful fashion. An important feature of the approach is that noisy objects can be detected effectively, leading to the formation of natural groups. The proposed algorithm is applied to a library database consisting of a collection of books.
Resumo:
Our current understanding of the evolution of the histone gene family suffers from a lack of information on plant histone genes1. With a view to gathering some much needed information on these genes, we studied a rice genomic clone in pBR322 carrying H2A, H2B and H4 histone genes on a DNA fragment2 of 6.64 kilobases (kb). A restriction map of the insert was constructed and the organization of the three genes on this insert was determined. H2A and H2B histone genes were located at one end of the insert and H4 gene at the other with a 3.1 kb spacer in between. This cluster of three histone genes was found to be transcribed in a bidirectional fashion with H2A and H2B genes being encoded by one strand and the H4 gene by the other. These results indicate that plant histone gene organization differs from that of the sea urchin, but shows many similarities to the systems in other animals.
Resumo:
Database management systems offer a very reliable and attractive data organization for fast and economical information storage and processing for diverse applications. It is much more important that the information should be easily accessible to users with varied backgrounds, professional as well as casual, through a suitable data sublanguage. The language adopted here (APPLE) is one such language for relational database systems and is completely nonprocedural and well suited to users with minimum or no programming background. This is supported by an access path model which permits the user to formulate completely nonprocedural queries expressed solely in terms of attribute names. The data description language (DDL) and data manipulation language (DML) features of APPLE are also discussed. The underlying relational database has been implemented with the help of the DATATRIEVE-11 utility for record and domain definition which is available on the PDP-11/35. The package is coded in Pascal and MACRO-11. Further, most of the limitations of the DATATRIEVE-11 utility have been eliminated in the interface package.
Resumo:
This paper investigates the problem of designing reverse channel training sequences for a TDD-MIMO spatial-multiplexing system. Assuming perfect channel state information at the receiver and spatial multiplexing at the transmitter with equal power allocation to them dominant modes of the estimated channel, the pilot is designed to ensure an stimate of the channel which improves the forward link capacity. Using perturbation techniques, a lower bound on the forward link capacity is derived with respect to which the training sequence is optimized. Thus, the reverse channel training sequence makes use of the channel knowledge at the receiver. The performance of orthogonal training sequence with MMSE estimation at the transmitter and the proposed training sequence are compared. Simulation results show a significant improvement in performance.
Resumo:
In an earlier paper [1], it has been shown that velocity ratio, defined with reference to the analogous circuit, is a basic parameter in the complete analysis of a linear one-dimensional dynamical system. In this paper it is shown that the terms constituting velocity ratio can be readily determined by means of an algebraic algorithm developed from a heuristic study of the process of transfer matrix multiplication. The algorithm permits the set of most significant terms at a particular frequency of interest to be identified from a knowledge of the relative magnitudes of the impedances of the constituent elements of a proposed configuration. This feature makes the algorithm a potential tool in a first approach to a rational design of a complex dynamical filter. This algorithm is particularly suited for the desk analysis of a medium size system with lumped as well as distributed elements.
Resumo:
We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.
Resumo:
In this paper, the control aspects of a hierarchical organization under the influence of "proportionality" policies are analyzed. Proportionality policies are those that restrict the recruitment to every level of the hierarchy (except the bottom most level or base level) to be in strict proportion to the promotions into that level. Both long term and short term control analysis have been discussed. In long term control the specific roles of the parameters of the system with regard to control of the shape and size of the system have been analyzed and yield suitable control strategies. In short term control, the attainability of a target or goal structure within a specific time from a given initial structure has been analyzed and yields the required recruitment strategies. The theoretical analyses have been illustrated with computational examples and also with real world data.
Resumo:
In this paper, the control aspects of a hierarchical organization under the influence of "proportionality" policies are analyzed. Proportionality policies are those that restrict the recruitment to every level of the hierarchy (except the bottom most level or base level) to be in strict proportion to the promotions into that level. Both long term and short term control analysis have been discussed. In long term control the specific roles of the parameters of the system with regard to control of the shape and size of the system have been analyzed and yield suitable control strategies. In short term control, the attainability of a target or goal structure within a specific time from a given initial structure has been analyzed and yields the required recruitment strategies. The theoretical analyses have been illustrated with computational examples and also with real world data. The control of such proportionality systems is then compared with that of the general systems (which do not follow such policies) with some significant conclusions. The control relations of such proportionality systems are found to be simpler and more practically feasible than those of general Markov systems, which do not have such restrictions. Such proportionality systems thus not only retain and match the flexibility of general Markov systems but also have the added advantage of simpler and more practically feasible controls. The proportionality policies hence act as an alternative and more practicably feasible means of control. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The complex web of interactions between the host immune system and the pathogen determines the outcome of any infection. A computational model of this interaction network, which encodes complex interplay among host and bacterial components, forms a useful basis for improving the understanding of pathogenesis, in filling knowledge gaps and consequently to identify strategies to counter the disease. We have built an extensive model of the Mycobacterium tuberculosis host-pathogen interactome, consisting of 75 nodes corresponding to host and pathogen molecules, cells, cellular states or processes. Vaccination effects, clearance efficiencies due to drugs and growth rates have also been encoded in the model. The system is modelled as a Boolean network. Virtual deletion experiments, multiple parameter scans and analysis of the system's response to perturbations, indicate that disabling processes such as phagocytosis and phagolysosome fusion or cytokines such as TNF-alpha and IFN-gamma, greatly impaired bacterial clearance, while removing cytokines such as IL-10 alongside bacterial defence proteins such as SapM greatly favour clearance. Simulations indicate a high propensity of the pathogen to persist under different conditions.
Resumo:
The complex web of interactions between the host immune system and the pathogen determines the outcome of any infection. A computational model of this interaction network, which encodes complex interplay among host and bacterial components, forms a useful basis for improving the understanding of pathogenesis, in filling knowledge gaps and consequently to identify strategies to counter the disease. We have built an extensive model of the Mycobacterium tuberculosis host-pathogen interactome, consisting of 75 nodes corresponding to host and pathogen molecules, cells, cellular states or processes. Vaccination effects, clearance efficiencies due to drugs and growth rates have also been encoded in the model. The system is modelled as a Boolean network. Virtual deletion experiments, multiple parameter scans and analysis of the system's response to perturbations, indicate that disabling processes such as phagocytosis and phagolysosome fusion or cytokines such as TNF-alpha and IFN-gamma, greatly impaired bacterial clearance, while removing cytokines such as IL-10 alongside bacterial defence proteins such as SapM greatly favour clearance. Simulations indicate a high propensity of the pathogen to persist under different conditions.
Resumo:
This paper proposes a method of designing fixed parameter decentralized power system stabilizers (PSS) for interconnected multi-machine power systems. Conventional design technique using a single machine infinite bus approximation involves the frequency response estimation called the GEP(s) between the AVR input and the resultant electrical torque. This requires the knowledge of equivalent external reactance and infinite bus voltage or their estimated values at each machine. Other design techniques using P-Vr characteristics or residues are based on complete system information. In the proposed method, information available at the high voltage bus of the step-up transformer is used to set up a modified Heffron-Phillip's model. With this model it is possible to decide the structure of the PSS compensator and tune its parameters at each machine in the multi-machine environment, using only those signals that are available at the generating station. The efficacy of the proposed design technique has been evaluated on three of the most widely used test systems. The simulation results have shown that the performance of the proposed stabilizer is comparable to that which could be obtained by conventional design but without the need for the estimation and computation of external system parameters.