6 resultados para Knowledge management (KM)

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevailing hypercompetitive environment has made it essential for organizations to gather competitive intelligence from environmental scanning. The knowledge gained leads to organizational learning, which stimulates increased patent productivity. This paper highlights five practices that aid in developing patenting intelligence and empirically verifies to what extent this organizational learning leads to knowledge gains and financial gains realized from consequent higher patent productivity. The model is validated based on the perceptions of professionals with patenting experience from two of the most aggressively patenting sectors in today’s economy, viz., IT and pharmaceutical sectors (n=119). The key finding of our study suggests that although organizational learning from environmental scanning exists, the application of this knowledge for increasing patent productivity lacks due appreciation. This missing link in strategic analysis and strategy implementation has serious implications for managers which are briefly discussed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comments constitute an important part of Web 2.0. In this paper, we consider comments on news articles. To simplify the task of relating the comment content to the article content the comments are about, we propose the idea of showing comments alongside article segments and explore automatic mapping of comments to article segments. This task is challenging because of the vocabulary mismatch between the articles and the comments. We present supervised and unsupervised techniques for aligning comments to segments the of article the comments are about. More specifically, we provide a novel formulation of supervised alignment problem using the framework of structured classification. Our experimental results show that structured classification model performs better than unsupervised matching and binary classification model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the design of practical web page classification systems one often encounters a situation in which the labeled training set is created by choosing some examples from each class; but, the class proportions in this set are not the same as those in the test distribution to which the classifier will be actually applied. The problem is made worse when the amount of training data is also small. In this paper we explore and adapt binary SVM methods that make use of unlabeled data from the test distribution, viz., Transductive SVMs (TSVMs) and expectation regularization/constraint (ER/EC) methods to deal with this situation. We empirically show that when the labeled training data is small, TSVM designed using the class ratio tuned by minimizing the loss on the labeled set yields the best performance; its performance is good even when the deviation between the class ratios of the labeled training set and the test set is quite large. When the labeled training data is sufficiently large, an unsupervised Gaussian mixture model can be used to get a very good estimate of the class ratio in the test set; also, when this estimate is used, both TSVM and EC/ER give their best possible performance, with TSVM coming out superior. The ideas in the paper can be easily extended to multi-class SVMs and MaxEnt models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Networks such as organizational network of a global company play an important role in a variety of knowledge management and information diffusion tasks. The nodes in these networks correspond to individuals who are self-interested. The topology of these networks often plays a crucial role in deciding the ease and speed with which certain tasks can be accomplished using these networks. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a pairwise stable network with only that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation. In this model, nodes enter the network sequentially and the utility of a node captures principal determinants of network formation, namely (1) benefits from immediate neighbors, (2) costs of maintaining links with immediate neighbors, (3) benefits from indirect neighbors, (4) bridging benefits, and (5) network entry fee. Based on this model, we analyze relevant network topologies such as star graph, complete graph, bipartite Turan graph, and multiple stars with interconnected centers, and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks. We also study the social welfare properties of the above topologies.