4 resultados para King, Martin Luther 1929-1968
em Indian Institute of Science - Bangalore - Índia
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
We report Doppler-only radar observations of Icarus at Goldstone at a transmitter frequency of 8510 MHz (3.5 cm wavelength) during 8-10 June 1996, the first radar detection of the object since 1968. Optimally filtered and folded spectra achieve a maximum opposite-circular (OC) polarization signal-to-noise ratio of about 10 and help to constrain Icarus' physical properties. We obtain an OC radar cross section of 0.05 km(2) (with a 35% uncertainty), which is less than values estimated by Goldstein (1969) and by Pettengill et al. (1969), and a circular polarization (SC/OC) ratio of 0.5+/-0.2. We analyze the echo power spectrum with a model incorporating the echo bandwidth B and a spectral shape parameter it, yielding a coupled constraint between B and n. We adopt 25 Hz as the lower bound on B, which gives a lower bound on the maximum pole-on breadth of about 0.6 km and upper bounds on the radar and optical albedos that are consistent with Icarus' tentative QS classification. The observed circular polarization ratio indicates a very rough near-surface at spatial scales of the order of the radar wavelength. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.