3 resultados para Keyword Advertising

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we describe two well-known mechanisms for sponsored search auction-Generalized Second Price (GSP) and Vickrey-Clarke-Groves (VCG). We then derive a new mechanism for sponsored search auction which we call optimal (OPT) mechanism. The OPT mechanism maximizes the search engine's expected revenue, while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We then undertake a detailed comparative study of the mechanisms GSP, VCG, and OPT. We compute and compare the expected revenue earned by the search engine under the three mechanisms when the advertisers are symmetric and some special conditions are satisfied. We also compare the three mechanisms in terms of incentive compatibility, individual rationality, and computational complexity. Note to Practitioners-The advertiser-supported web site is one of the successful business models in the emerging web landscape. When an Internet user enters a keyword (i.e., a search phrase) into a search engine, the user gets back a page with results, containing the links most relevant to the query and also sponsored links, (also called paid advertisement links). When a sponsored link is clicked, the user is directed to the corresponding advertiser's web page. The advertiser pays the search engine in some appropriate manner for sending the user to its web page. Against every search performed by any user on any keyword, the search engine faces the problem of matching a set of advertisers to the sponsored slots. In addition, the search engine also needs to decide on a price to be charged to each advertiser. Due to increasing demands for Internet advertising space, most search engines currently use auction mechanisms for this purpose. These are called sponsored search auctions. A significant percentage of the revenue of Internet giants such as Google, Yahoo!, MSN, etc., comes from sponsored search auctions. In this paper, we study two auction mechanisms, GSP and VCG, which are quite popular in the sponsored auction context, and pursue the objective of designing a mechanism that is superior to these two mechanisms. In particular, we propose a new mechanism which we call the OPT mechanism. This mechanism maximizes the search engine's expected revenue subject to achieving Bayesian incentive compatibility and individual rationality. Bayesian incentive compatibility guarantees that it is optimal for each advertiser to bid his/her true value provided that all other agents also bid their respective true values. Individual rationality ensures that the agents participate voluntarily in the auction since they are assured of gaining a non-negative payoff by doing so.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advertising is ubiquitous in the online community and more so in the ever-growing and popular online video delivery websites (e. g., YouTube). Video advertising is becoming increasingly popular on these websites. In addition to the existing pre-roll/post-roll advertising and contextual advertising, this paper proposes an in-stream video advertising strategy-Computational Affective Video-in-Video Advertising (CAVVA). Humans being emotional creatures are driven by emotions as well as rational thought. We believe that emotions play a major role in influencing the buying behavior of users and hence propose a video advertising strategy which takes into account the emotional impact of the videos as well as advertisements. Given a video and a set of advertisements, we identify candidate advertisement insertion points (step 1) and also identify the suitable advertisements (step 2) according to theories from marketing and consumer psychology. We formulate this two part problem as a single optimization function in a non-linear 0-1 integer programming framework and provide a genetic algorithm based solution. We evaluate CAVVA using a subjective user-study and eye-tracking experiment. Through these experiments, we demonstrate that CAVVA achieves a good balance between the following seemingly conflicting goals of (a) minimizing the user disturbance because of advertisement insertion while (b) enhancing the user engagement with the advertising content. We compare our method with existing advertising strategies and show that CAVVA can enhance the user's experience and also help increase the monetization potential of the advertising content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of scaling up data integration, such that new sources can be quickly utilized as they are discovered, remains elusive: Global schemas for integrated data are difficult to develop and expand, and schema and record matching techniques are limited by the fact that data and metadata are often under-specified and must be disambiguated by data experts. One promising approach is to avoid using a global schema, and instead to develop keyword search-based data integration-where the system lazily discovers associations enabling it to join together matches to keywords, and return ranked results. The user is expected to understand the data domain and provide feedback about answers' quality. The system generalizes such feedback to learn how to correctly integrate data. A major open challenge is that under this model, the user only sees and offers feedback on a few ``top-'' results: This result set must be carefully selected to include answers of high relevance and answers that are highly informative when feedback is given on them. Existing systems merely focus on predicting relevance, by composing the scores of various schema and record matching algorithms. In this paper, we show how to predict the uncertainty associated with a query result's score, as well as how informative feedback is on a given result. We build upon these foundations to develop an active learning approach to keyword search-based data integration, and we validate the effectiveness of our solution over real data from several very different domains.