217 resultados para Kernel function

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note, we point out that a large family of n x n matrix valued kernel functions defined on the unit disc D subset of C, which were constructed recently in [9], behave like the familiar Bergman kernel function on ID in several different ways. We show that a number of questions involving the multiplication operator on the corresponding Hilbert space of holomorphic functions on D can be answered using this likeness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A natural class of weighted Bergman spaces on the symmetrized polydisc is isometrically embedded as a subspace in the corresponding weighted Bergman space on the polydisc. We find an orthonormal basis for this subspace. It enables us to compute the kernel function for the weighted Bergman spaces on the symmetrized polydisc using the explicit nature of our embedding. This family of kernel functions includes the Szego and the Bergman kernel on the symmetrized polydisc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we propose a novel family of kernels for multivariate time-series classification problems. Each time-series is approximated by a linear combination of piecewise polynomial functions in a Reproducing Kernel Hilbert Space by a novel kernel interpolation technique. Using the associated kernel function a large margin classification formulation is proposed which can discriminate between two classes. The formulation leads to kernels, between two multivariate time-series, which can be efficiently computed. The kernels have been successfully applied to writer independent handwritten character recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of SPH-based simulations of impact dynamics, an optimised and automated form of the acceleration correction algorithm (Shaw and Reid, 2009a) is developed so as to remove spurious high frequency oscillations in computed responses whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. A rational framework for an insightful characterisation of the erstwhile acceleration correction method is first set up. This is followed by the proposal of an optimised version of the method, wherein the strength of the correction term in the momentum balance and energy equations is optimised. For the first time, this leads to an automated procedure to arrive at the artificial viscosity term. In particular, this is achieved by taking a spatially varying response-dependent support size for the kernel function through which the correction term is computed. The optimum value of the support size is deduced by minimising the (spatially localised) total variation of the high oscillation in the acceleration term with respect to its (local) mean. The derivation of the method, its advantages over the heuristic method and issues related to its numerical implementation are discussed in detail. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the speech production mechanism and the asso- ciated linear source-filter model. For voiced speech sounds in particular, the source/glottal excitation is modeled as a stream of impulses and the filter as a cascade of second-order resonators. We show that the process of sampling speech signals can be modeled as filtering a stream of Dirac impulses (a model for the excitation) with a kernel function (the vocal tract response),and then sampling uniformly. We show that the problem of esti- mating the excitation is equivalent to the problem of recovering a stream of Dirac impulses from samples of a filtered version. We present associated algorithms based on the annihilating filter and also make a comparison with the classical linear prediction technique, which is well known in speech analysis. Results on synthesized as well as natural speech data are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fluctuation of the distance between a fluorescein-tyrosine pair within a single protein complex was directly monitored in real time by photoinduced electron transfer and found to be a stationary, time-reversible, and non-Markovian Gaussian process. Within the generalized Langevin equation formalism, we experimentally determine the memory kernel K(t), which is proportional to the autocorrelation function of the random fluctuating force. K(t) is a power-law decay, t(-0.51 +/- 0.07) in a broad range of time scales (10(-3)-10 s). Such a long-time memory effect could have implications for protein functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the heat kernel for arbitrary tensor fields on S-3 and (Euclidean) AdS(3) using a group theoretic approach. We use these results to also obtain the heat kernel on certain quotients of these spaces. In particular, we give a simple, explicit expression for the one loop determinant for a field of arbitrary spin s in thermal AdS(3). We apply this to the calculation of the one loop partition function of N = 1 supergravity on AdS(3). We find that the answer factorizes into left- and right-moving super Virasoro characters built on the SL(2, C) invariant vacuum, as argued by Maloney and Witten on general grounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel k(S)(z, w) = ( 1 - z(w)over bar)- 1 for |z|, |w| < 1, by means of (1/k(S))( T, T *) = 0, we consider an arbitrary open connected domain Omega in C(n), a kernel k on Omega so that 1/k is a polynomial and a tuple T = (T(1), T(2), ... , T(n)) of commuting bounded operators on a complex separable Hilbert spaceHsuch that (1/k)( T, T *) >= 0. Under some standard assumptions on k, it turns out that whether a characteristic function can be associated with T or not depends not only on T, but also on the kernel k. We give a necessary and sufficient condition. When this condition is satisfied, a functional model can be constructed. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples T.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider four-dimensional CFTs which admit a large-N expansion, and whose spectrum contains states whose conformal dimensions do not scale with N. We explicitly reorganise the partition function obtained by exponentiating the one-particle partition function of these states into a heat kernel form for the dual string spectrum on AdS(5). On very general grounds, the heat kernel answer can be expressed in terms of a convolution of the one-particle partition function of the light states in the four-dimensional CFT. (C) 2013 Elsevier B.V. All rights reserved.