4 resultados para Kelly Mine
em Indian Institute of Science - Bangalore - Índia
Resumo:
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.
Resumo:
Calculated phase relations in the system MnOSi02-C02-02 were used to propose a thermodynamic explanation for the thermal metamorphism of rhodochrosite beds lying between chert strata. The metamorphic MnOS i 0 2 minerals are arranged in order quartz(chert), rhodonite. tephroite and manganosite-hausmannite-pyrochroite rhodonite across the ore bed. The calculation covered temperatures up to 1000 K and pressures up to 5 kb. The zoning was interpreted as the result of a continuous rise in metamorphic temperature. The equilibrium partner of rhodochrosite changed from rhodonite through manganosite. Across the ore bed there are gradients in the chemical potential of MnO and SiO2 but fugacities of volatlle components such as C02. 02 and H20 were probably uniform at any given time and location during formation of the zones. Assuming that the total pressure and the fugacity of C02 were at 1.4 kb and 1.0 1 b. respectively. rhodonite. tephroite and manganosite would have formed at 472. 478 and 629 K.
Resumo:
Communication and environmental monitoring play a major role in underground mining both from production and safety point of view. However, underground mining communication as well as monitoring devices encounter several challenges because of the nature of underground features and characteristics. Lack of real time information from underground workings may hamper production and create serious safety risks. Proper communication and monitoring devices are inevitable requirements for better production and improved safety. Communication and environmental monitoring devices are basic element of underground mine infrastructure. This paper describes the performance of communication and monitoring devices being used in underground mines. An attempt has been made to assess the safety risks by these devices which may dictate future research directions.