3 resultados para Karl VII, emperor of Germany.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Reaction of 8-methyl-2-naphthol (4a) with the quinone3 gave a mixture of 8-methyl-2,2-(tetrachlorohenylenedioxy)naphthalen-1(2H)-one (1b) and 8-methyl-1,1-(tetrachloro-o-phenylenedioxy)naphthalen-2(1H)-one (2b) in almost equal amounts. Similarly, reaction of the naphthols (4b), (4d) and (4e) with3 gave the corresponding dienones (1c &2c), (1e &2e) and (1f &2f) in almost equal amounts. Reaction of 8-t-butyl-2-naphthol (4c) with3 gave exclusively 8-t-butyl-2,2-(tetrachloro--henylenedioxy)-naphthalen-1(2H)-one (1d). Oxidation of 3-t-butyl-2-naphthol (4f) with3 gave a mixture of 3-t-butyl-2,2-(tetrachloro-o-phenylendioxy) nephthalene-1(2H)-one(1g) and 3-t-butyl-1,1-(tetrachloro--phenylenedioxy)naphthelen-2 (1H)-one (2g) in the ratio 1∶6. Thus, onlyt-butyl group exherts pronounced steric influence on the rearrangement observed in the reaction of β-naphthol with the quinone3. Structures of all the compounds have been established by spectral data.
Resumo:
It was shown earlier that the monoterpene ketone, piperitenone (I) is one of the major metabolites of R-(+)-pulegone, a potent hepatotoxin, In the present studies, the metabolic disposition of piperitenone (I) was examined in rats. Piperitenone (I) was administered orally (400 mg/kg of the b. wt./day) to rats for 5 days, The following urinary metabolites were isolated and identified by various spectral analyses: p-cresol (VI), 6,7-dehydromenthofuran (III), p-mentha-1,3,5,8-tetraen-3-ol (IX), p-mentha-1,3, 5-friene-3, 8-diol (X), 5-hydroxypiperitenone (VIII), 7-hydroxypiperitenone (XI), 10-hydroxypiperitenone (XII), and 4-hydroxypiperitenone (VII). Incubation of piperitenone (I) with phenobarbital-induced rat liver microsomes in the presence of NADPH resulted in the formation of five metabolites which have been tentatively identified as metabolites III, VII, VIII, XI, XII, on the basis of gas chromatography retention time and gas chromatography-mass spectrometry analysis. Based on these results, a probable mechanism for the formation of p-cresol from piperitenone (I) via the intermediacy of metabolite III has been proposed.