240 resultados para KINETIC CHAIN EXERCISES
em Indian Institute of Science - Bangalore - Índia
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Resumo:
Short-chain fatty acids (SCFAs) play a major role in carbon cycle and can be utilized as a source of carbon and energy by bacteria. Salmonella typhimurium propionate kinase (StTdcD) catalyzes reversible transfer of the gamma-phosphate of ATP to propionate during L-threonine degradation to propionate. Kinetic analysis revealed that StTdcD possesses broad ligand specificity and could be activated by various SCFAs (propionate > acetate approximate to butyrate), nucleotides (ATP approximate to GTP > CTP approximate to TTP; dATP > dGTP > dCTP) and metal ions (Mg2+ approximate to Mn2+ > Co2+). Inhibition of StTdcD by tricarboxylic acid (TCA) cycle intermediates such as citrate, succinate, alpha-ketoglutarate and malate suggests that the enzyme could be under plausible feedback regulation. Crystal structures of StTdcD bound to PO4 (phosphate), AMP, ATP, Ap4 (adenosine tetraphosphate), GMP, GDP, GTP, CMP and CTP revealed that binding of nucleotide mainly involves hydrophobic interactions with the base moiety and could account for the broad biochemical specificity observed between the enzyme and nucleotides. Modeling and site-directed mutagenesis studies suggest Ala88 to be an important residue involved in determining the rate of catalysis with SCFA substrates. Molecular dynamics simulations on monomeric and dimeric forms of StTdcD revealed plausible open and closed states, and also suggested role for dimerization in stabilizing segment 235-290 involved in interfacial interactions and ligand binding. Observation of an ethylene glycol molecule bound sufficiently close to the gamma-phosphate in StTdcD complexes with triphosphate nucleotides supports direct in-line phosphoryl transfer. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.
Resumo:
The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.
Resumo:
Understanding the mechanism by which an unfolded polypeptide chain folds to its unique, functional structure is a primary unsolved problem in biochemistry. Fundamental advances towards understanding how proteins fold have come from kinetic studies, Kinetic studies allow the dissection of the folding pathway of a protein into individual steps that are defined by partially-structured folding intermediates. Improvements in both the structural and temporal resolution of physical methods that are used to monitor the folding process, as well as the development of new methodologies, are now making it possible to obtain detailed structural information on protein folding pathways. The protein engineering methodology has been particularly useful in characterizing the structures of folding intermediates as well as the transition state of folding, Several characteristics of protein folding pathways have begun to emerge as general features for the folding of many different proteins. Progress in our understanding of how structure develops during folding is reviewed here.
Resumo:
Two series of thermotropic main chain discotic liquid crystalline polyethers, PR4m-n, based on rufigallol were prepared starting from the symmetric tetraethers of rufigallol, R4m; m and n represent the number of carbon atoms in the side chain and spacer segment, respectively. The symmetric tetraethers were in turn readily prepared by selective alkylation of rufigallol under controlled phase-transfer conditions. GPC analysis of the polymers suggested that they were all of moderate molecular weights, with M-n varying between 5400 and 17 000. The length of the spacer segment n in these polyethers was systematically varied, and its effect on the phase transition temperatures and the mesophase structure was examined using DSC, polarized light microscopy, and X-ray diffraction. It is noticed that when the spacer lengths are relatively long(n greater than or equal to 2m), the isotropization temperature (TD-i) decreases as the spacer length n increases, an observation that is in accordance with those previously made. However, when the spacer lengths are relatively small (n < 2m), the dependence of TD-i is quite the opposite; TD-i actually increases with an increase in spacer length. Furthermore, X-ray diffraction studies indicate that, in the discotic columnar mesophases that are formed, the columns pack in a hexagonal manner when n greater than or equal to 2m, while they do so in a rectangular lattice when n < 2m, leading to the formation of Dh and Dr mesophases, respectively. Finally, comparison of the discotic polyethers with their low molar mass analogues confirms the role of polymerization in stabilizing the mesophase; while all the polymers exhibit columnar mesophases, some of their low molar mass analogues are not liquid crystalline.
Resumo:
The interaction of Cibacron blue F3GA with ribosome inactivating proteins, ricin, ricin A-chain and momordin has been investigated using difference absorption spectroscopy. Ricin was found to bind the dye with a 20- and 2-fold lower affinity than ricin A-chain and momordin, respectively. A time dependent increase in the amplitude of Cibacron blue difference spectrum in the presence of ricin was observed on addition of beta-mercaptoethanol. Analysis of the kinetic profile of this increase showed a biphasic phenomenon and the observed rates were found to be independent of the concentration of beta-mercaptoethanol. Kinetics of reduction of the intersubunit disulphide bond in ricin by beta-mercaptoethanol showed that reduction pet se is a second order reaction. Therefore, the observed changes in the difference spectra of Cibacron blue probably indicate a slow change in the conformation of ricin, triggered by reduction of the intersubunit disulphide bond.
Resumo:
This is the first comprehensive report on the calculation of segment size, which signifies the asic unit of flow in long chain plasticizing liquids, by a novel multi-pronged approach. Unlike,low molecular weight liquids and high polymer melts these complex long chain liquids encompasses the least understood domain of the liquid state. In the present work the flow behaviour of carboxylate ester (300-900 Da) has been explained through segmental motion taking into account the independence of molecular weight region. The segment size have been calculated by various methods based on satistical thermodynamics, molecular dynamics and group additivity nd their merits analysed.
Resumo:
Regenerable 'gel-coated' cationic resins with fast sorption kinetics and high sorption capacity have application potential for removal of trace metal ions even in large-scale operations. Poly(acrylic acid) has been gel-coated on high-surface area silica (pre-coated with ethylene-vinyl acetate copolymer providing a thin barrier layer) and insolubilized by crosslinking with a low-molecular-weight diepoxide (epoxy equivalent 180 g) in the presence of benzyl dimethylamine catalyst at 70 degrees C, In experiments performed for Ca2+ sorption from dilute aqueous solutions of Ca(NO,),, the gel-coated acrylic resin is found to have nearly 40% higher sorption capacity than the bead-form commercial methacrylic resin Amberlite IRC-50 and also several limes higher rate of sorption. The sorption on the gel-coated sorbent under vigorous agitation has the characteristics of particle diffusion control with homogeneous (gel) diffusion in resin phase. A new mathematical model is proposed for such sorption on gel-coated ion-exchange resin in finite bath and solved by applying operator-theoretic methods. The analytical solution so obtained shows goad agreement with experimental sorption kinetics at relatively low levels (< 70%) of resin conversion.
Resumo:
Ultraviolet (UV) radiation is one of the major risk factors of cataract (loss of eye-lens transparency). The influence of UVB radiation (300 nm, 100 mu W cm(-2)) on the activity and apparent kinetic constants (K-m and V-max) of rat lens hexokinase (HK;EC2.7.1.1), phosphofructokinase (PFK;EC2.7.1.11), isocitrate dehydrogenase (ICDH;EC1.1.1.41) and malate dehydrogenase (MDH;EC1.1.1.37) of energy metabolism has been investigated by irradiating the lens homogenate of three-and 12-month-old rats. In the three-month-old group specific activities of HK and PFK are reduced by 56 and 43 %, respectively, and there is no change in ICDH and MDH activities after a 24 h exposure. On the other hand, in the 12-month-old group the decreases are 72, 71, 24 and 16 % for HK, PFK. ICDH and MDH, respectively. UVB irradiation increases the apparent K-m of HK and PFK (in both age groups), whereas the K-m of ICDH and MDH is not altered. While the decrease in V-max of these enzymes due to UVB exposure is only marginal in three-month-old rats, it is more pronounced (significant) in 12-month-old rats. A similar decrease in enzyme activities of HK and PFK is also observe upon UVB exposure of the intact rat lens. The photoinduced changes in energy metabolism may in turn have a bearing on lens transparency, particularly at an older age.
Resumo:
A 100,000 x g supernatant fraction prepared from developing groundnut seeds (30-35 days after flowering) catalyzed the synthesis of fatty acids from [l-14C]acetate at a rate of 120nmoles of acetate incorporated per hr per gram fresh weight of tissue. 90% of this incorporated label was associated with fatty acids. The major fatty acids formed were stearic- (77%) and palmitic acids (14%) with 4% of oleic acid. The fatty acid synthetase activity was stable when stored at 0-4 degrees C for at least fifteen days. It is concluded from these results that acetyl-coA carboxylase and all the enzymes of fatty acid synthetase from developing groundnut seeds are soluble.
Resumo:
This article deals with the kinetics and mechanism of acrylonitrile (AN) polymerization initiated by Cu(II)-4-anilino 3-pentene 2-one[Cu(II)ANIPO], Cu(II)-4-p-toluedeno 3-pentene 2-one [Cu(II)TPO], and Cu(II)-4-p-nitroanilino 3-pentene 2-one [Cu(II)NAPO] in bulk at 60°C. The polymerization is free radical in nature. The exponent of initiator(I) is 0.5. The initiation step is a complex formation between the chelate and monomer and subsequent decomposition of the intermediate complex giving rise to free radical and Cu(I). This is substantiated by ultraviolet (UV) and electron spin resonance (ESR) studies. The activation energies and kinetic and chain transfer constants have also been evaluated.
Resumo:
Complexes of lanthanide perchlorates with the ligand N,N,N,N-tetra-methyl-3,6,9-trioxaundecane diamide (TUD) of the composition Ln(TUD)2-(ClO4)3 (Ln triple bond; length as m-dash La, Nd, Ho, Er, Y) were isolated. Electrical conductivity values indicate that all the perchlorate groups are ionic. IR and nuclear magnetic resonance (1H and 13C) data prove that the ligand coordinates to the metal via the three ether oxygens and the two carbonyl oxygens. A probable coordination number of ten can be assigned for all the complexes.
Resumo:
The effect of cobalt salicylate on the oxidative degradation and ignition of polystyrene has been studied. It was found that cobalt salicylate sensitizes both the degradation and ignition of polystyrene by facilitating electron-transfer processes in the propagation step. From thermochemical and kinetic studies it was found that the cobalt ion, owing to its ability to exist in variable valence states, promotes electron transfer in the propagation step of polymer degradation, increasing the rate of propagation and consequently the overall rate. Using solid-phase thermal ignition theory, an attempt has been made to explain the sensitization of ignition by the cobalt ion.