233 resultados para K-H unstable wave
em Indian Institute of Science - Bangalore - Índia
Resumo:
The growth rates of the hydrodynamic modes in the homogeneous sheared state of a granular material are determined by solving the Boltzmann equation. The steady velocity distribution is considered to be the product of the Maxwell Boltzmann distribution and a Hermite polynomial expansion in the velocity components; this form is inserted into them Boltzmann equation and solved to obtain the coeificients of the terms in the expansion. The solution is obtained using an expansion in the parameter epsilon =(1 - e)(1/2), and terms correct to epsilon(4) are retained to obtain an approximate solution; the error due to the neglect of higher terms is estimated at about 5% for e = 0.7. A small perturbation is placed on the distribution function in the form of a Hermite polynomial expansion for the velocity variations and a Fourier expansion in the spatial coordinates: this is inserted into the Boltzmann equation and the growth rate of the Fourier modes is determined. It is found that in the hydrodynamic limit, the growth rates of the hydrodynamic modes in the flow direction have unusual characteristics. The growth rate of the momentum diffusion mode is positive, indicating that density variations are unstable in the limit k--> 0, and the growth rate increases proportional to kslash} k kslash}(2/3) in the limit k --> 0 (in contrast to the k(2) increase in elastic systems), where k is the wave vector in the flow direction. The real and imaginary parts of the growth rate corresponding to the propagating also increase proportional to kslash k kslash(2/3) (in contrast to the k(2) and k increase in elastic systems). The energy mode is damped due to inelastic collisions between particles. The scaling of the growth rates of the hydrodynamic modes with the wave vector I in the gradient direction is similar to that in elastic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fraction? of 0.1 and into a glassy state at?=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[??(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector and? is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[??(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameter? for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.
Resumo:
Using normal mode analysis Rayleigh-Taylor instability is investigated for three-layer viscous stratified incompressible steady flow, when the top 3rd and bottom 1st layers extend up to infinity, the middle layer has a small thickness δ. The wave Reynolds number in the middle layer is assumed to be sufficiently small. A dispersion relation (a seventh degree polynomial in wave frequency ω) valid up to the order of the maximal value of all possible Kj (j less-than-or-equals, slant 0, K is the wave number) in each coefficient of the polynomial is obtained. A sufficient condition for instability is found out for the first time, pursuing a medium wavelength analysis. It depends on ratios (α and β) of the coefficients of viscosity, the thickness of the middle layer δ, surface tension ratio T and wave number K. This is a new analytical criterion for Rayleigh-Taylor instability of three-layer fluids. It recovers the results of the corresponding problem for two-layer fluids. Among the results obtained, it is observed that taking the coefficients of viscosity of 2nd and 3rd layers same can inhibit the effect of surface tension completely. For large wave number K, the thickness of the middle layer should be correspondingly small to keep the domain of dependence of the threshold wave number Kc constant for fixed α, β and T.
Resumo:
The instability of coupled longitudinal and transverse electromagnetic modes associated with long wavelengths is studied in bounded streaming plasmas. The main conclusions are as follows: (i) For long waves for which O (k 2)=0, in the absence of relative streaming motion of electrons and ions and aωp/c<0.66, the whole spectrum of harmonic waves is excited due to finite temperature and boundary effects consisting of two subseries. One of these subseries can be identified with Tonks-Dattner resonance oscillations for the electrons, and arises primarily due to the electrons with frequencies greater than the electrostatic plasma frequency corresponding to the electron density in the midplane in the undisturbed state. The other series arises primarily due to ion motion. When aωp/c>0.66, in addition to the above spectrum of harmonic waves, the system admits an infinite number of growing and decaying waves. The instability associated with these modes is found to arise due to the interaction of the waves inside the plasma with the external electromagnetic field. (ii) For modes with comparatively shorter wavelengths for which O (k3)=0, the coupling due to finite temperature sets in, and it is found that the two series of harmonic waves obtained in (i) deriving energy from the transverse modes also become unstable. Thus, for these wavelengths the system admits three sets of growing and decaying modes, first two for all values of aωp/c and the third for (aωp/c) > 0.66. (iii) The presence of streaming velocities introduces various other coupling mechanisms, and we find that even for the wavelengths for which O (k2)=0, we get three sets of growing and decaying waves. The numerical values for the growth rates show that the streaming velocities enhance the growth rates of instability significantly.
Resumo:
Exact N-wave solutions for the generalized Burgers equation u(t) + u(n)u(x) + (j/2t + alpha) u + (beta + gamma/x) u(n+1) = delta/2u(xx),where j, alpha, beta, and gamma are nonnegative constants and n is a positive integer, are obtained. These solutions are asymptotic to the (linear) old-age solution for large time and extend the validity of the latter so as to cover the entire time regime starting where the originally sharp shock has become sufficiently thick and the viscous effects are felt in the entire N wave.
Resumo:
A detailed analy~is on the propagation of a sinusoidal flood wave in a wide prismatic open channel b.as hen made by numc? ii.~ll~integrating We govemins nondimenional equations of unsteady flow in an open chamei. EmpE:dsis has been laid on the effect of wave parmefen on th propagation of 6.8 sinusoidal wave. Results show that the amount of subsidence is more in the case of small wave anplltude and wave duration cases. Further, wave duration has been noticed to have a relatively Vier influence on subsidence than wave amplitude. The speed at which the peak of the wave moves is observed to be a function of only the wave amplitude.
Resumo:
Vapour species effusing from a magnesia Knudsen cell containing Mg-Zn alloy at 923 K were condensed on a water cooled copper plate. The equilibrium composition of the vapour phase over the alloy was determined from chemical analysis of the condensate. The activity coefficients of both components in the alloy have been derived from the data using a modified Gibbs-Duhem relation. The ratio of saturation vapour pressures of pure Zn and Mg obtained from the analysis of alloy data agree well with values from the literature, providing an internal check on the accuracy of data obtained in this study. Both components of the alloy exhibit negative deviations from Raoult's law. The concentration-concentration structure factor of Bhatia and Thomton at zero wave vector, evaluated from the measurements, indicate the presence of MgZn2 type complex in the liquid state. The associated regular solution model has been used for the thermodynamic description of liquid Mg-Zn alloys.
Resumo:
Acoustic surface waves can be generated along the plasma column in pressure equilibrium with a gas blanket in the presence of the uniform axial magnetic field. Unlike the case of volume-acoustic-wave generation in the magnetoplasma reported recently, the threshold magnetic field required for the generation of acoustic surface waves increases with increasing gas pressure.
Resumo:
This paper presents the results of the rise time calculation of a SAW resonator. The total rise time is given by rise time = [(rise time of cavity)2 + (rise time of reflectors)2 + (rise time of IDT) 2 ]. 1/2 These rise times are calculated in terms of the effective length of the cavity , the characteristics of the reflector, and the number of finger pairs in the IDT. The rise time of a 38 MHz one-port resonator on Y-Z LiNb03 calculated using this approach is found to be in good agreement with experimental results .
Resumo:
A parametric study of the flood wave propagation problem is made, based on numerical solution of the nondimensionalized unsteady flow equations of open channels. The propagation of a sinusoidal flood wave in a prismatic channel is studied for uniform initial flow. The governing parameters (initial uniform flow Froude number, wave amplitude, wave duration, channel width parameter and side slope) are varied over a wide range. In all, 49 cases are studied. Effects of these governing parameters on the subsidence of stage and discharge and the speed of the wave peak are described in detail. The relative wave amplitude is found to vary linearly with F0, the initial uniform flow froude number, for lower F0 values. Wave duration has a very pronounced effect on subsidence with greater subsidence at lower wave duration values.
Resumo:
An instrument for simultaneous measurement of dynamic strain and temperature in a thermally unstable ambience has been proposed, based on fiber Bragg grating technology. The instrument can function as a compact and stand-alone broadband thermometer and a dynamic strain gauge. It employs a source wavelength tracking procedure for linear dependence of the output on the measurand, offering high dynamic range. Two schemes have been demonstrated with their relative merits. As a thermometer, the present instrumental configuration can offer a linear response in excess of 500 degrees C that can be easily extended by adding a suitable grating and source without any alteration in the procedure. Temperature sensitivity is about 0.06 degrees C for a bandwidth of 1 Hz. For the current grating, the upper limit of strain measurement is about 150 mu epsilon with a sensitivity of about 80 n epsilon Hz(-1/2). The major source of uncertainty associated with dynamic strain measurement is the laser source intensity noise, which is of broad spectral band. A low noise source device or the use of optical power regulators can offer improved performance. The total harmonic distortion is less than 0.5% up to about 50 mu epsilon, 1.2% at 100 mu epsilon and about 2.3% at 150 mu epsilon. Calibrated results of temperature and strain measurement with the instrument have been presented. Traces of ultrasound signals recorded by the system at 200 kHz, in an ambience of 100-200 degrees C temperature fluctuation, have been included. Also, the vibration spectrum and engine temperature of a running internal combustion engine has been recorded as a realistic application of the system.
Resumo:
1. 1. Colon lysosome were separated by differential centrifugation and lysosomes with three different densities, probably arising from the three layers of colon, were found. 2. 2. Hypervitaminosis A resulted in a significant increase in prothrombin time which was restored to normal on vitamin K1 (20) supplementation. 3. 3. There was no appreciable change in the liver storage of vitamin A between hypervitaminotic rats receiving vitamin A and those rats receiving vitamin K1 (20) in addition to excess vitamin A. 4. 4. The colon lysosomes were unstable in hypervitaminosis A, showing an increased free activity of lysosomal enzymes like β-glucuronidase, acid phosphatase and arylsulphatase. This increase of free activity of lysoso3al enzymes in hypervitaminosis A could be prevented by oral supplementation of vitamin K1 (20). 5. 5. In "mild" vitamin A deficiency the release of arylsulphatase was significantly retarded, whereas the decreased free acid phosphatase activity was not significant. 6. 6. "Severe" vitamin A deficiency resulted in a significantly increased free activity of arylsulphatase and acid phosphatase, thus showing the instability of the lysosomal particles in this condition. 7. 7. Addition of vitamin K1 (20) to the incubation medium in vitro could prevent the vitamin A-induced release of arylsulphatase from liver lysosomes, whereas α-tocopherol was inactive. 8. 8. Retinol and retinoic acid were nearly twice as active as ethanol in the release of arylsulphatase from lysosomes in vitro, whereas 5,6-monoepoxyretinoic acid was inactive. 9. 9. The role of vitamins A and K on the lysosomal membrane structure is discussed.
Resumo:
The density-wave theory of Ramakrishnan and Yussouff is extended to provide a scheme for describing dislocations and other topological defects in crystals. Quantitative calculations are presented for the order-parameter profiles, the atomic configuration, and the free energy of a screw dislocation with Burgers vector b=(a/2, a/2, a/2) in a bcc solid. These calculations are done using a simple parametrization of the direct correlation function and a gradient expansion. It is conventional to express the free energy of the dislocation in a crystal of size R as (λb2/4π)ln(αR/‖b‖), where λ is the shear elastic constant, and α is a measure of the core energy. Our results yield for Na the value α≃1.94a/(‖c1’’‖)1/2 (≃1.85) at the freezing temperature (371 K) and α≃2.48a/(‖c1’’‖)1/2 at 271 K, where c1’’ is the curvature of the first peak of the direct correlation function c(q). Detailed results for the density distribution in the dislocation, particularly the core region, are also presented. These show that the dislocation core has a columnar character. To our knowledge, this study represents the first calculation of dislocation structure, including the core, within the framework of an order-parameter theory and incorporating thermal effects.
Resumo:
In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.