11 resultados para John Chrysostom, Saint, d. 407.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Protein aggregation, linked to many of diseases, is initiated when monomers access rogue conformations that are poised to form amyloid fibrils. We show, using simulations of src SH3 domain, that mechanical force enhances the population of the aggregation-prone (N*) states, which are rarely populated under force free native conditions but are encoded in the spectrum of native fluctuations. The folding phase diagrams of SH3 as a function of denaturant concentration (C]), mechanical force (f), and temperature exhibit an apparent two-state behavior, without revealing the presence of the elusive N* states. Interestingly, the phase boundaries separating the folded and unfolded states at all C] and f fall on a master curve, which can be quantitatively described using an analogy to superconductors in a magnetic field. The free energy profiles as a function of the molecular extension (R), which are accessible in pulling experiments, (R), reveal the presence of a native-like N* with a disordered solvent-exposed amino-terminal beta-strand. The structure of the N* state is identical with that found in Fyn SH3 by NMR dispersion experiments. We show that the timescale for fibril formation can be estimated from the population of the N* state, determined by the free energy gap separating the native structure and the N* state, a finding that can be used to assess fibril forming tendencies of proteins. The structures of the N* state are used to show that oligomer formation and likely route to fibrils occur by a domain-swap mechanism in SH3 domain. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Polarization of ligand fluorescence was used to study the binding of 4-methylumbelliferyl beta-D-galactopyranoside (MeUmb-Galp) to Abrus precatorious agglutinin. The binding of the fluorescent sugar to the lectin led to considerable polarization of the MeUmb-Galp fluorescence, which was also quenched by about 30% on binding to the lectin. The binding of the fluorescent sugar was carbohydrate-specific, as evidenced by inhibition of both fluorescence polarization and quenching when lectin was preincubated with lactose. The association constant as determined by fluorescence polarization is 1.42 x 10(4) M-1 at 25 degrees C and is in excellent agreement with those determined by fluorescence quenching (Ka = 1.51 x 10(4) M-1) and equilibrium dialysis (Ka = 1.62 x 10(4) M-1) at 25 degrees C. The numbers of binding sites as determined by fluorescence polarization, quenching and equilibrium dialysis agree very well with one another, n being equal to 2.0 +/- 0.05. The consistency between the association constant value determined by fluorescence polarization, quenching and equilibrium dialysis shows the validity of this approach to study lectin-sugar interaction.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.
Resumo:
Sequence repeats constituting the telomeric regions of chromosomes are known to adopt a variety of unusual structures, consisting of a G tetraplex stem and short stretches of thymines or thymines and adenines forming loops over the stem. Detailed model building and molecular mechanics studies have been carried out for these telomeric sequences to elucidate different types of loop orientations and possible conformations of thymines in the loop. The model building studies indicate that a minimum of two thymines have to be interspersed between guanine stretches to form folded-back structures with loops across adjacent strands in a G tetraplex (both over the small as well as large groove), while the minimum number of thymines required to build a loop across the diagonal strands in a G tetraplex is three. For two repeat sequences, these hairpins, resulting from different types of folding, can dimerize in three distinct ways-i.e., with loops across adjacent strands and on same side, with loops across adjacent strands and on opposite sides, and with loops across diagonal strands and on opposite sides-to form hairpin dimer structures. Energy minimization studies indicate that all possible hairpin dimers have very similar total energy values, though different structures are stabilized by different types of interactions. When the two loops are on the same side, in the hairpin dimer structures of d(G(4)T(n)G(4)), the thymines form favorably stacked tetrads in the loop region and there is interloop hydrogen bonding involving two hydrogen bonds for each thymine-thymine pair. Our molecular mechanics calculations on various folded-back as well as parallel tetraplex structures of these telomeric sequences provide a theoretical rationale for the experimentally observed feature that the presence of intervening thymine stretches stabilizes folded-back structures, while isolated stretches of guanines adopt a parallel tetraplex structure
Resumo:
The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.
Resumo:
The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.
Resumo:
Metabolism of D-amino acids is of considerable interest due to their key importance in cell structure and function. Salmonella typhimurium D-serine deaminase (StDSD) is a pyridoxal 5' phosphate (PLP) dependent enzyme that catalyses degradation of D-Ser to pyruvate and ammonia. The first crystal structure of D-serine deaminase described here reveals a typical Foldtype II or tryptophan synthase beta subunit fold of PLP-dependent enzymes. Although holoenzyme was used for crystallization of both wild-type StDSD (WtDSD) and selenomethionine labelled StDSD (SeMetDSD), significant electron density was not observed for the cofactor, indicating that the enzyme has a low affinity for the cofactor under crystallization conditions. Interestingly, unexpected conformational differences were observed between the two structures. The WtDSD was in an open conformation while SeMetDSD, crystallized in the presence of isoserine, was in a closed conformation suggesting that the enzyme is likely to undergo conformational changes upon binding of substrate as observed in other Foldtype II PLP-dependent enzymes. Electron density corresponding to a plausible sodium ion was found near the active site of the closed but not in the open state of the enzyme. Examination of the active site and substrate modelling suggests that Thr166 may be involved in abstraction of proton from the C alpha atom of the substrate. Apart from the physiological reaction, StDSD catalyses a, b elimination of D-Thr, D-Allothr and L-Ser to the corresponding alpha-keto acids and ammonia. The structure of StDSD provides a molecular framework necessary for understanding differences in the rate of reaction with these substrates.
Resumo:
Bypass operation with the aid of a special bypass valve is an important part of present-day schemes of protection for h.v. d.c. transmission systems. In this paper, the possibility of using two valves connected to any phase in the bridge convertor for the purpose of bypass operation is studied. The scheme is based on the use of logic circuits in conjunction with modified methods of fault detection. Analysis of the faults in a d.c. transmission system is carried out with the object of determining the requirements of such a logic-circuit control system. An outline of the scheme for the logic-circuit control of the bypass operation for both rectifier and invertor bridges is then given. Finally, conclusions are drawn regarding the advantages of such a system, which include reduction in the number of valves, prevention of severe faults and fast clearance of faults, in addition to the immediate location of the fault and its nature.
Resumo:
The Aib-(D)Ala dipeptide segment has a tendency to form both type-I'/III' and type-I/III beta-turns. The occurrence of prime turns facilitates the formation of beta-hairpin conformations, while type-I/III turns can nucleate helix formation. The octapeptide Boc-Leu-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-OMe (1) has been previously shown to form a beta-hairpin in the crystalline state and in solution. The effects of sequence truncation have been examined using the model peptides Boc-Phe-Val-Aib-Xxx-Leu-Phe-NHMe (2, 6), Boc-Val-Aib-Xxx-Leu-NHMe (3, 7), and Boc-Aib-Xxx-NHMe (4, 8), where Xxx = (D)Ala, Aib. For peptides with central Aib-Aib segments, Boc-Phe-Val-Aib-Aib-Leu-Phe-NHMe (6), Boc-Val-Aib-Aib-Leu-NHMe (7), and Boc-Aib-Aib-NHMe (8) helical conformations have been established by NMR studies in both hydrogen bonding (CD(3)OH) and non-hydrogen bonding (CDCl(3)) solvents. In contrast, the corresponding hexapeptide Boc-Phe-Val-Aib-(D)Ala-Leu-Phe-Val-NHMe (2) favors helical conformations in CDCl(3) and beta-hairpin conformations in CD(3)OH. The beta-turn conformations (type-I'/III) stabilized by intramolecular 4 -> 1 hydrogen bonds are observed for the peptide Boc-Aib-(D)Ala-NHMe (4) and Boc-Aib-Aib-NIiMe (8) in crystals. The tetrapeptide Boc-Val-Aib-Aib-Leu-NHMe (7) adopts an incipient 3(10)-helical conformation stabilized by three 4 -> 1 hydrogen bonds. The peptide Boc-Val-Aib-(D)Ala-Leu-NHMe (3) adopts a novel et-turn conformation, stabilized by three intramolecular hydrogen bonds (two 4 -> 1 and one 5 -> 1). The Aib-L(D)Ala segment adopts a type-I' beta-turn conformation. The observation of an NOE between Val (1) NH <-> HNCH(3) (5) in CD(3)OH suggests, that the solid state conformation is maintained in methanol solutions. (C) 2011 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 96: 744-756, 2011.
Resumo:
A transient 2D axi-symmetric and lumped parameter (LP) model with constant outflow conditions have been developed to study the discharge capacity of an activated carbon bed. The predicted discharge times and variations in bed pressure and temperature are in good agreement with experimental results obtained from a 1.82 l adsorbed natural gas (ANG) storage system. Under ambient air conditions, a maximum temperature drop of 29.5 K and 45.5 K are predicted at the bed center for discharge rates of 1.0 l min(-1) and 5.0 l min(-1) respectively. The corresponding discharge efficiencies are 77% and 71.5% respectively with discharge efficiencies improving with decreasing outflow rates. Increasing the LID ratio from 1.9 to 7.8 had only a marginal increase in the discharge efficiency. Forced convection (exhaust gas) heating had a significant effect on the discharge efficiency, leading to efficiencies as high as 92.8% at a discharge of 1.0 l min(-1) and 88.7% at 5 l min(-1). Our study shows that the LP model can be reliably used to obtain discharge times due to the uniform pressure distributions in the bed. Temperature predictions with the LP model were more accurate at ambient conditions and higher discharge rates, due to greater uniformity in bed temperatures. For the low thermal conductivity carbon porous beds, our study shows that exhaust gas heating can be used as an effective and convenient strategy to improve the discharge characteristics and performance of an ANG system. (C) 2013 Elsevier Ltd. All rights reserved.