37 resultados para Job training
em Indian Institute of Science - Bangalore - Índia
Resumo:
For point to point multiple input multiple output systems, Dayal-Brehler-Varanasi have proved that training codes achieve the same diversity order as that of the underlying coherent space time block code (STBC) if a simple minimum mean squared error estimate of the channel formed using the training part is employed for coherent detection of the underlying STBC. In this letter, a similar strategy involving a combination of training, channel estimation and detection in conjunction with existing coherent distributed STBCs is proposed for noncoherent communication in Amplify-and-Forward (AF) relay networks. Simulation results show that the proposed simple strategy outperforms distributed differential space-time coding for AF relay networks. Finally, the proposed strategy is extended to asynchronous relay networks using orthogonal frequency division multiplexing.
Resumo:
This paper investigates the problem of designing reverse channel training sequences for a TDD-MIMO spatial-multiplexing system. Assuming perfect channel state information at the receiver and spatial multiplexing at the transmitter with equal power allocation to them dominant modes of the estimated channel, the pilot is designed to ensure an stimate of the channel which improves the forward link capacity. Using perturbation techniques, a lower bound on the forward link capacity is derived with respect to which the training sequence is optimized. Thus, the reverse channel training sequence makes use of the channel knowledge at the receiver. The performance of orthogonal training sequence with MMSE estimation at the transmitter and the proposed training sequence are compared. Simulation results show a significant improvement in performance.
Resumo:
We are addressing the novel problem of jointly evaluating multiple speech patterns for automatic speech recognition and training. We propose solutions based on both the non-parametric dynamic time warping (DTW) algorithm, and the parametric hidden Markov model (HMM). We show that a hybrid approach is quite effective for the application of noisy speech recognition. We extend the concept to HMM training wherein some patterns may be noisy or distorted. Utilizing the concept of ``virtual pattern'' developed for joint evaluation, we propose selective iterative training of HMMs. Evaluating these algorithms for burst/transient noisy speech and isolated word recognition, significant improvement in recognition accuracy is obtained using the new algorithms over those which do not utilize the joint evaluation strategy.
Resumo:
A Batch Processing Machine (BPM) is one which processes a number of jobs simultaneously as a batch with common beginning and ending times. Also, a BPM, once started cannot be interrupted in between (Pre-emption not allowed). This research is motivated by a BPM in steel casting industry. There are three main stages in any steel casting industry viz., pre-casting stage, casting stage and post-casting stage. A quick overview of the entire process, is shown in Figure 1. There are two BPMs : (1) Melting furnace in the pre-casting stage and (2) Heat Treatment Furnace (HTF) in the post casting stage of steel casting manufacturing process. This study focuses on scheduling the latter, namely HTF. Heat-treatment operation is one of the most important stages of steel casting industries. It determines the final properties that enable components to perform under demanding service conditions such as large mechanical load, high temperature and anti-corrosive processing. In general, different types of castings have to undergo more than one type of heat-treatment operations, where the total heat-treatment processing times change. To have a better control, castings are primarily classified into a number of job-families based on the alloy type such as low-alloy castings and high alloy castings. For technical reasons such as type of alloy, temperature level and the expected combination of heat-treatment operations, the castings from different families can not be processed together in the same batch.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
Balance and stability are very important for everybody and especially for sports-person who undergo extreme physical activities. Balance and stability exercises not only have a great impact on the performance of the sportsperson but also play a pivotal role in their rehabilitation. Therefore, it is very essential to have knowledge about a sportsperson’s balance and also to quantify the same. In this work, we propose a system consisting of a wobble board, with a gyro enhanced orientation sensor and a motion display for visual feedback to help the sportsperson improve their stability. The display unit gives in real time the orientation of the wobble board, which can help the sportsperson to apply necessary corrective forces to maintain neutral position. The system is compact and portable. We also quantify balance and stability using power spectral density. The sportsperson is made stand on the wobble board and the angular orientation of the wobble board is recorded for each 0.1 second interval. The signal is analized using discrete Fourier transforms. The power of this signal is related to the stability of the subject. This procedure is used to measure the balance and stability of an elite cricket team. Representative results are shown below: Table 1 represents power comparison of two subjects and Table 2 represents power comparison of left leg and right leg of one subject. This procedure can also be used in clinical practice to monitor improvement in stability dysfunction of sportsperson with injuries or other related problems undergoing rehabilitation.
Resumo:
The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.
Resumo:
We consider the problem of matching people to jobs, where each person ranks a subset of jobs in an order of preference, possibly involving ties. There are several notions of optimality about how to best match each person to a job; in particular, popularity is a natural and appealing notion of optimality. However, popular matchings do not always provide an answer to the problem of determining an optimal matching since there are simple instances that do not adroit popular matchings. This motivates the following extension of the popular rnatchings problem:Given a graph G; = (A boolean OR J, E) where A is the set of people and J is the set of jobs, and a list < c(1), c(vertical bar J vertical bar)) denoting upper bounds on the capacities of each job, does there exist (x(1), ... , x(vertical bar J vertical bar)) such that setting the capacity of i-th, job to x(i) where 1 <= x(i) <= c(i), for each i, enables the resulting graph to admit a popular matching. In this paper we show that the above problem is NP-hard. We show that the problem is NP-hard even when each c is 1 or 2.
Resumo:
Receive antenna selection (AS) reduces the hardware complexity of multi-antenna receivers by dynamically connecting an instantaneously best antenna element to the available radio frequency (RF) chain. Due to the hardware constraints, the channels at various antenna elements have to be sounded sequentially to obtain estimates that are required for selecting the ``best'' antenna and for coherently demodulating data. Consequently, the channel state information at different antennas is outdated by different amounts. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, the channel estimates of different antennas should be weighted differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then derive an explicit formula for the optimal selection weights that minimize the SEP. We find that when selection weights are not used, the SEP need not improve as the number of antenna elements increases, which is in contrast to the ideal channel estimation case. However, the optimal selection weights remedy this situation and significantly improve performance.
Resumo:
In this paper, we propose a training-based channel estimation scheme for large non-orthogonal space-time block coded (STBC) MIMO systems.The proposed scheme employs a block transmission strategy where an N-t x N-t pilot matrix is sent (for training purposes) followed by several N-t x N-t square data STBC matrices, where Nt is the number of transmit antennas. At the receiver, we iterate between channel estimation (using an MMSE estimator) and detection (using a low-complexity likelihood ascent search (LAS) detector) till convergence or for a fixed number of iterations. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed scheme at low complexities. The fact that we could show such good results for large STBCs (e.g., 16 x 16 STBC from cyclic division algebras) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot-based channel estimation and turbo coding) establishes the effectiveness of the proposed scheme.
Resumo:
Hardware constraints, which motivate receive antenna selection, also require that various antenna elements at the receiver be sounded sequentially to obtain estimates required for selecting the `best' antenna and for coherently demodulating data thereafter. Consequently, the channel state information at different antennas is outdated by different amounts and corrupted by noise. We show that, for this reason, simply selecting the antenna with the highest estimated channel gain is not optimum. Rather, a preferable strategy is to linearly weight the channel estimates of different antennas differently, depending on the training scheme. We derive closed-form expressions for the symbol error probability (SEP) of AS for MPSK and MQAM in time-varying Rayleigh fading channels for arbitrary selection weights, and validate them with simulations. We then characterize explicitly the optimal selection weights that minimize the SEP. We also consider packet reception, in which multiple symbols of a packet are received by the same antenna. New suboptimal, but computationally efficient weighted selection schemes are proposed for reducing the packet error rate. The benefits of weighted selection are also demonstrated using a practical channel code used in third generation cellular systems. Our results show that optimal weighted selection yields a significant performance gain over conventional unweighted selection.
Resumo:
In receive antenna selection (AS), only signals from a subset of the antennas are processed at any time by the limited number of radio frequency (RF) chains available at the receiver. Hence, the transmitter needs to send pilots multiple times to enable the receiver to estimate the channel state of all the antennas and select the best subset. Conventionally, the sensitivity of coherent reception to channel estimation errors has been tackled by boosting the energy allocated to all pilots to ensure accurate channel estimates for all antennas. Energy for pilots received by unselected antennas is mostly wasted, especially since the selection process is robust to estimation errors. In this paper, we propose a novel training method uniquely tailored for AS that transmits one extra pilot symbol that generates accurate channel estimates for the antenna subset that actually receives data. Consequently, the transmitter can selectively boost the energy allocated to the extra pilot. We derive closed-form expressions for the proposed scheme's symbol error probability for MPSK and MQAM, and optimize the energy allocated to pilot and data symbols. Through an insightful asymptotic analysis, we show that the optimal solution achieves full diversity and is better than the conventional method.
Resumo:
A model comprising several servers, each equipped with its own queue and with possibly different service speeds, is considered. Each server receives a dedicated arrival stream of jobs; there is also a stream of generic jobs that arrive to a job scheduler and can be individually allocated to any of the servers. It is shown that if the arrival streams are all Poisson and all jobs have the same exponentially distributed service requirements, the probabilistic splitting of the generic stream that minimizes the average job response time is such that it balances the server idle times in a weighted least-squares sense, where the weighting coefficients are related to the service speeds of the servers. The corresponding result holds for nonexponentially distributed service times if the service speeds are all equal. This result is used to develop adaptive quasi-static algorithms for allocating jobs in the generic arrival stream when the load parameters are unknown. The algorithms utilize server idle-time measurements which are sent periodically to the central job scheduler. A model is developed for these measurements, and the result mentioned is used to cast the problem into one of finding a projection of the root of an affine function, when only noisy values of the function can be observed
Resumo:
We consider the problem of minimizing the total completion time on a single batch processing machine. The set of jobs to be scheduled can be partitioned into a number of families, where all jobs in the same family have the same processing time. The machine can process at most B jobs simultaneously as a batch, and the processing time of a batch is equal to the processing time of the longest job in the batch. We analyze that properties of an optimal schedule and develop a dynamic programming algorithm of polynomial time complexity when the number of job families is fixed. The research is motivated by the problem of scheduling burn-in ovens in the semiconductor industry
Resumo:
Distributed Space-Time Block Codes (DSTBCs) from Complex Orthogonal Designs (CODs) (both square and non-square CODs other than the Alamouti design) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using the amplify and forward protocol. For such a network, a new class of high rate, training-symbol embedded (TSE) SSD DSTBCs are proposed from TSE-CODs. The constructed codes include the training symbols within the structure of the code which is shown to be the key point to obtain high rate along with the SSD property. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations. Non-square TSE-CODs are shown to provide better rates (in symbols per channel use) compared to the known SSD DSTBCs for relay networks when the number of relays is less than 10. Importantly, the proposed DSTBCs do not contain zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on and off transitions within every codeword use. Hence, the proposed DSTBCs eliminate the antenna switching problem.