62 resultados para Jet propulsion
em Indian Institute of Science - Bangalore - Índia
Resumo:
Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.
Resumo:
The main objective of statistical analysis of experi- mental investigations is to make predictions on the basis of mathematical equations so as the number of experiments. Abrasive jet machining (AJM) is an unconventional and novel machining process wherein microabrasive particles are propelled at high veloc- ities on to a workpiece. The resulting erosion can be used for cutting, etching, cleaning, deburring, drilling and polishing. In the study completed by the authors, statistical design of experiments was successfully employed to predict the rate of material removal by AJM. This paper discusses the details of such an approach and the findings.
Resumo:
Lifted turbulent jet diffusion flame is simulated using Conditional Moment Closure (CMC). Specifically, the burner configuration of Cabra et al. [R. Cabra, T. Myhrvold, J.Y. Chen. R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1881-1887] is chosen to investigate H-2/N-2 jet flame supported by a vitiated coflow of products of lean H-2/air combustion. A 2D, axisymmetric flow-model fully coupled with the scalar fields, is employed. A detailed chemical kinetic scheme is included, and first order CIVIC is applied. Simulations are carried out for different jet velocities and coflow temperatures (T-c) The predicted liftoff generally agrees with experimental data, as well as joint-PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for T-c = 1025 and 1080 K reveal that (1) Inside the flame zone, the chemical term balances the molecular diffusion term, and hence the Structure is of a diffusion flamelet for both cases. (2) In the pre-flame zone, the structure depends on the coflow temperature: for the 1025 K case, the chemical term being small, the advective term balances the axial turbulent diffusion term. However, for the 1080 K case. the chemical term is large and balances the advective term, the axial turbulent diffusion term being small. It is concluded that, lift-off is controlled (a) by turbulent premixed flame propagation for low coflow temperature while (b) by autoignition for high coflow temperature. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The paper presents the results of an experimental study regarding the effect of the lateral dimension of the receiving water on the spreading, mixing, and temperature decay of a horizontal buoyant surface jet. The widths of the ambient water in the experiments have been 240, 120, 90 and 60 times the diameter of the jet nozzle. Based on the experimental data, correlations are carried out and empirical equations for prediction of jet width, thickness in vertical direction and longitudinal temperature decay are obtained. The available data of earlier investigators are included to obtain generalized equations for the spreading and temperature decay. Similarity of temperature profiles in the lateral and vertical directions is observed. The longitudinal temperature decay is found to vary inversely with distance in the flow direction and ¼th power of the densimetric Froude number.
Resumo:
The low-level jet (LLJ) over the Indian region, which is most prominent during the monsoon (June-September) season, has been studied with a general circulation model (GCM). The role of African orography in modulating this jet is the focus of this article. The presence o African orography intensifies the cross-equatorial flow. Contrary to previous modelling Studies we find that cross-equatorial flow occurs even in the absence of African orography, though this flow is muc weaker even when the Indian monsoon rainfall is high. However, the location of the meridional jet near the equator in the Somali region is linked to the Indian monsoon rainfall rather than to the land-sea contrast over Somalia. Also, the presence of African orography, and not the strength of the Indian monsoon, controls the vertical extent of the equatorial meridional wind. In an aqua-planet simulation, the cross-equatorial flow occurs about 30 to the west of the rainfall maximum. Thus, the longitudinal location of the equatorial Somali jet depends upon the occurrence of monsoon heating, but the vertical structure of the jet is on account of the western boundary current in the atmosphere due to the East African highlands under the influence of monsoonal heat source.
Resumo:
The kinetics of iron(II1) extraction by bis(Zethylhexy1) phosphate (HDEHP, HA) in kerosene from sulfuric acid solutions has been studied in a liquid-liquid laminar jet reactor. The contact time of the interface in this reacting device is of the same order of magnitude as the surface renewal time in dispersion mixing and much less than that obtained in the relatively quiescent condition of the Lewis cell. Yet the analysis of the data in this study suggested a rate-controlling step involving surface saturation quite in conformity with that obtained in the Lewis cell and not with that in dispersion mixing as reported in the literature. Further, the mechanism suggested a weaker dependence of the rate on hydrogen ion concentration which was reported by other workers.
Resumo:
Counterflow supersonic jet is used as a drag reduction device during the experiments in free piston driven shock tunnel, HST3. Accelerometer based force balance is employed to measure the drag force experienced by the 60-degree apex angle blunt cone model without and with the supersonic jet opposing the hypersonic flow. It is observed that the drag force decreases with increase in injection pressure ratio until the critical injection pressure is reached. Maximum reduction in drag force of 44 percent is recorded at the critical injection pressure ratio 22.36. Further increase in injection pressure ratio has reduced the percentage drag reduction. Change in nature of the flowfield around the model has also been observed across the critical injection pressure ratio.
Resumo:
Numerical and experimental studies of a supersonic jet (Helium) inclined at 45 degrees to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be approximate to 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.
Resumo:
Single pulse shock tube facility has been developed in the High Temperature Chemical Kinetics Lab, Aerospace Engineering Department, to carry out ignition delay studies and spectroscopic investigations of hydrocarbon fuels. Our main emphasis is on measuring ignition delay through pressure rise and by monitoring CH emission for various jet fuels and finding suitable additives for reducing the delay. Initially the shock tube was tested and calibrated by measuring the ignition delay of C2H6-O2 mixture. The results are in good agreement with earlier published works. Ignition times of exo-tetrahdyrodicyclopentadiene (C10H16), which is a leading candidate fuel for scramjet propulsion has been studied in the reflected shock region in the temperature range 1250 - 1750 K with and without adding Triethylamine (TEA). Addition of TEA results in substantial reduction of ignition delay of C10H16.
Resumo:
This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.
Resumo:
The removal of noise and outliers from health signals is an important problem in jet engine health monitoring. Typically, health signals are time series of damage indicators, which can be sensor measurements or features derived from such measurements. Sharp or sudden changes in health signals can represent abrupt faults and long term deterioration in the system is typical of gradual faults. Simple linear filters tend to smooth out the sharp trend shifts in jet engine signals and are also not good for outlier removal. We propose new optimally designed nonlinear weighted recursive median filters for noise removal from typical health signals of jet engines. Signals for abrupt and gradual faults and with transient data are considered. Numerical results are obtained for a jet engine and show that preprocessing of health signals using the proposed filter significantly removes Gaussian noise and outliers and could therefore greatly improve the accuracy of diagnostic systems. [DOI: 10.1115/1.3200907].
Resumo:
In this article, a new flame extinction model based on the k/epsilon turbulence time scale concept is proposed to predict the flame liftoff heights over a wide range of coflow temperature and O-2 mass fraction of the coflow. The flame is assumed to be quenched, when the fluid time scale is less than the chemical time scale ( Da < 1). The chemical time scale is derived as a function of temperature, oxidizer mass fraction, fuel dilution, velocity of the jet and fuel type. The present extinction model has been tested for a variety of conditions: ( a) ambient coflow conditions ( 1 atm and 300 K) for propane, methane and hydrogen jet flames, ( b) highly preheated coflow, and ( c) high temperature and low oxidizer concentration coflow. Predicted flame liftoff heights of jet diffusion and partially premixed flames are in excellent agreement with the experimental data for all the simulated conditions and fuels. It is observed that flame stabilization occurs at a point near the stoichiometric mixture fraction surface, where the local flow velocity is equal to the local flame propagation speed. The present method is used to determine the chemical time scale for the conditions existing in the mild/ flameless combustion burners investigated by the authors earlier. This model has successfully predicted the initial premixing of the fuel with combustion products before the combustion reaction initiates. It has been inferred from these numerical simulations that fuel injection is followed by intense premixing with hot combustion products in the primary zone and combustion reaction follows further downstream. Reaction rate contours suggest that reaction takes place over a large volume and the magnitude of the combustion reaction is lower compared to the conventional combustion mode. The appearance of attached flames in the mild combustion burners at low thermal inputs is also predicted, which is due to lower average jet velocity and larger residence times in the near injection zone.
Resumo:
The complex three-dimensional flowfield produced by secondary injection of hot gases in a rocket nozzle for thrust vector control is analyzed by solving unsteady three-dimensional Euler equations with appropriate boundary conditions. Various system performance parameters like secondary jet amplification factor and axial thrust augmentation are deduced by integrating the nozzle wall pressure distributions obtained as part of the flowfield solution and compared with measurements taken in actual static tests. The agreement is good within the practical range of secondary injectant flow rates for thrust vector control applications.