4 resultados para Jean-Claude Labrecque
em Indian Institute of Science - Bangalore - Índia
Resumo:
Ten different tRNAGly1 genes from the silk worm, Bombyx mori, have been cloned and characterized. These genes were transcribed in vitro in homologous nuclear extracts from the posterior silk gland (PSG) or nuclear extracts derived from the middle silk gland or ovarian tissues. Although the transcription levels were much higher in the PSG nuclear extracts, the transcriptional efficiency of the individual genes followed a similar pattern in all the extracts. Based on the levels of in vitro transcription, the ten tRNAGly1 genes could be divided into three groups, viz., those which were transcribed at very high levels (e.g., clone pR8), high to medium levels (e.g., pBmil, pBmpl, pBmhl, pBmtl) and low to barely detectable levels (e.g., pBmsl, pBmjl and pBmkl). The coding sequences of all these tRNA genes being identical, the differential transcription suggested that the flanking sequences modulate their transcriptional efficiency. The presence of positive and negative regulatory elements in the 5' flanking regions of these genes was confirmed by transcription competition experiments. A positive element was present in the immediate upstream A + T-rich sequences in all the genes, but no consensus sequences correlating to the transcriptional status could be generated. The presence of negative elements on the other hand was indicated only in some of the genes and therefore may have a role in the differential transcription of these tRNAGly genes in vivo.
Resumo:
Multilayers of poly(diallyldimethylammonium chloride) (PDDA) and citrate capped Au nanoparticles (AuNPs) anchored on sodium 3-mercapto-1-propanesulfonate modified gold electrode by electrostatic layer-by-layer assembly (LbL) technique are shown to be an excellent architecture for the direct electrochemical oxidation of As(III) species. The growth of successive layers in the proposed LbL architecture is followed by atomic force microscopy, UV-vis spectroscopy, quartz crystal microbalance with energy dissipation, and electrochemistry. The first bilayer is found to show rather different physico-chemical characteristics as compared to the subsequent bilayers, and this is attributed to the difference in the adsorption environments. The analytical utility of the architecture with five bilayers is exploited for arsenic sensing via the direct electrocatalytic oxidation of As(III), and the detection limit is found to be well below the WHO guidelines of 10 ppb. When the non-redox active PDDA is replaced by the redoxactive Os(2,2'-bipyridine)(2)Cl-poly(4-vinylpyridine) polyelectrolyte (PVPOs) in the LbL assembly, the performance is found to be inferior, demonstrating that the redox activity of the polyelectrolyte is futile as far as the direct electro-oxidation of As(III) is concerned. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The molecular mechanism of antimony-resistant Leishmania donovani ((SbLD)-L-R)-driven up-regulation of IL-10 and multidrug-resistant protein 1 (MDR1) in infected macrophages (M phi s) has been investigated. This study showed that both promastigote and amastigote forms of (SbLD)-L-R, but not the antimony-sensitive form of LD, express a unique glycan with N-acetylgalactosamine as a terminal sugar. Removal of it either by enzyme treatment or by knocking down the relevant enzyme, galactosyltransferase in (SbLD)-L-R (KD (SbLD)-L-R), compromises the ability to induce the above effects. Infection of M phi s with KD (SbLD)-L-R enhanced the sensitivity toward antimonials compared with infection with (SbLD)-L-R, and infection of BALB/c mice with KD (SbLD)-L-R caused significantly less organ parasite burden compared with infection induced by (SbLD)-L-R. The innate immune receptor, Toll-like receptor 2/6 heterodimer, is exploited by (SbLD)-L-R to activate ERK and nuclear translocation of NF-kappa B involving p50/c-Rel leading to IL-10 induction, whereas MDR1 up-regulation is mediated by PI3K/Akt and the JNK pathway. Interestingly both recombinant IL-10 and (SbLD)-L-R up-regulate MDR1 in M. with different time kinetics, where phosphorylation of PI3K was noted at 12 h and 48 h, respectively, but M phi s derived from IL-10(-/-) mice are unable to show MDR1 up-regulation on infection with (SbLD)-L-R. Thus, it is very likely that an IL-10 surge is a prerequisite for MDR1 up-regulation. The transcription factor important for IL-10-driven MDR1 up-regulation is c-Fos/c-Jun and not NF-kappa B, as evident from studies with pharmacological inhibitors and promoter mapping with deletion constructs.
Resumo:
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.