7 resultados para Jacobi fractions
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new analysis of the nature of the solutions of the Hamilton-Jacobi equation of classical dynamics is presented based on Caratheodory’s theorem concerning canonical transformations. The special role of a principal set of solutions is stressed, and the existence of analogous results in quantum mechanics is outlined.
Resumo:
The paper presents a novel slicing based method for computation of volume fractions in multi-material solids given as a B-rep whose faces are triangulated and shared by either one or two materials. Such objects occur naturally in geoscience applications and the said computation is necessary for property estimation problems and iterative forward modeling. Each facet in the model is cut by the planes delineating the given grid structure or grid cells. The method, instead of classifying the points or cells with respect to the solid, exploits the convexity of triangles and the simple axis-oriented disposition of the cutting surfaces to construct a novel intermediate space enumeration representation called slice-representation, from which both the cell containment test and the volume-fraction computation are done easily. Cartesian and cylindrical grids with uniform and non-uniform spacings have been dealt with in this paper. After slicing, each triangle contributes polygonal facets, with potential elliptical edges, to the grid cells through which it passes. The volume fractions of different materials in a grid cell that is in interaction with the material interfaces are obtained by accumulating the volume contributions computed from each facet in the grid cell. The method is fast, accurate, robust and memory efficient. Examples illustrating the method and performance are included in the paper.
Resumo:
COENZYME Q (CoQ), which is widely distributed in animal, plant and microbial sources, has been implicated in electron transport1 and generally assumed to be associated with mitochondria. However, it has also been found in non-mitochondrial fractions of green leaves, although it appears to be concentrated in mitochondria2. A similar distribution has now been demonstrated in rat liver cell fractions.
Resumo:
A general analysis of the Hamilton-Jacobi form of dynamics motivated by phase space methods and classical transformation theory is presented. The connection between constants of motion, symmetries, and the Hamilton-Jacobi equation is described.
Resumo:
We affirmatively answer a question due to S. Bocherer concerning the feasibility of removing one differential operator from the standard collection of m + 1 of them used to embed the space of Jacobi forms of weight 2 and index m into several pieces of elliptic modular forms. (C) 2014 Elsevier Inc. All rights reserved.