131 resultados para Iteration Scheme
em Indian Institute of Science - Bangalore - Índia
Resumo:
Adhesive forces between two approaching asperities will deform the asperities, and under certain conditions this will result in a sudden runaway deformations leading to a jump-to-contact instability. We present finite element-based numerical studies on adhesion-induced deformation and instability in asperities. We consider the adhesive force acting on an asperity, when it is brought near a rigid half-space, due to van der Waals interaction between the asperity and the half-space. The adhesive force is considered to be distributed over the volume of the asperity (body force), thus resulting in more realistic simulations for the length scales considered. Iteration scheme based on a ``residual stress update'' algorithm is used to capture the effect of deformation on the adhesion force, and thereby the equilibrium configuration and the corresponding force. The numerical results are compared with the previous approximate analytical solutions for adhesion force, deformation of the asperity and adhesion-induced mechanical instability (jump-to-contact). It is observed that the instability can occur at separations much higher,and could possibly explain the higher value of instability separation observed in experiments. The stresses in asperities, particularly in case of small ones, are found to be high enough to cause yielding before jump -to-contact. The effect of roughness is considered by modeling a spherical protrusion on the hemispherical asperity.This small-scale roughness at the tip of the asperities is found to control the deformation behavior at small separations, and hence are important in determining the friction and wear due to the jump-to-contact instability.
Resumo:
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csiszar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner bases method to compute an implicit representation of minimum KL-divergence models.
Resumo:
Mufflers with at least one acoustically absorptive duct are generally called dissipative mufflers. Generally, for want of systems approach, these mufflers are characterized by transmission loss of the lined duct with overriding corrections for the terminations, mean flow, etc. In this article, it is proposed that dissipative duct should be integrated with other muffler elements, source impedance and radiation impedance, by means of transfer matrix approach. Towards this end, the transfer matrix for rectangular duct with mean flow has been derived here, for the least attenuated mode. Mean flow introduces a coupling between transverse wave numbers and axial wave number, the evaluation of which therefore calls for simultaneous solution of two or three transcendental equations. This is done by means of a Newton-Raphson iteration scheme, which is illustrated here for square ducts lined with porous ceramic tiles.
Resumo:
The Ball-Larus path-profiling algorithm is an efficient technique to collect acyclic path frequencies of a program. However, longer paths -those extending across loop iterations - describe the runtime behaviour of programs better. We generalize the Ball-Larus profiling algorithm for profiling k-iteration paths - paths that can span up to to k iterations of a loop. We show that it is possible to number suchk-iteration paths perfectly, thus allowing for an efficient profiling algorithm for such longer paths. We also describe a scheme for mixed-mode profiling: profiling different parts of a procedure with different path lengths. Experimental results show that k-iteration profiling is realistic.
Resumo:
An explicit near-optimal guidance scheme is developed for a terminal rendezvous of a spacecraft with a passive target in circular orbit around the earth. The thrust angle versus time profile for the continuous-thrust, constant-acceleration maneuver is derived, based on the assumption that the components of inertial acceleration due to relative position and velocity are negligible on account of the close proximity between the two spacecraft. The control law is obtained as a ''bilinear tangent law'' and an analytic solution to the state differential equations is obtained by expanding a portion of the integrand as an infinite series in time. A differential corrector method is proposed, to obtain real-time updates to the guidance parameters at regular time intervals. Simulation of the guidance scheme is carried out using the Clohessy-Wiltshire equations of relative motion as well as the inverse-square two-body equations of motion. Results for typical examples are presented.
Resumo:
While frame-invariant solutions for arbitrarily large rotational deformations have been reported through the orthogonal matrix parametrization, derivation of such solutions purely through a rotation vector parametrization, which uses only three parameters and provides a parsimonious storage of rotations, is novel and constitutes the subject of this paper. In particular, we employ interpolations of relative rotations and a new rotation vector update for a strain-objective finite element formulation in the material framework. We show that the update provides either the desired rotation vector or its complement. This rules out an additive interpolation of total rotation vectors at the nodes. Hence, interpolations of relative rotation vectors are used. Through numerical examples, we show that combining the proposed update with interpolations of relative rotations yields frame-invariant and path-independent numerical solutions. Advantages of the present approach vis-a-vis the updated Lagrangian formulation are also analyzed.
Resumo:
The so-called “Scheme of Squares”, displaying an interconnectivity of heterogeneous electron transfer and homogeneous (e.g., proton transfer) reactions, is analysed. Explicit expressions for the various partial currents under potentiostatic conditions are given. The formalism is applicable to several electrode geometries and models (e.g., semi-infinite linear diffusion, rotating disk electrodes, spherical or cylindrical systems) and the analysis is exact. The steady-state (t→∞) expressions for the current are directly given in terms of constant matrices whereas the transients are obtained as Laplace transforms that need to be inverted by approximation of numerical methods. The methodology employs a systems approach which replaces a system of partial differential equations (governing the concentrations of the several electroactive species) by an equivalent set of difference equations obeyed by the various partial currents.
Resumo:
We extend here the formalism developed in Part I (for the potentiostatic response) to the admittance analysis of the scheme of squares. The results are applicable, as before, to several configurations of the electrode such as the rotating disk or the planar. All that one has to do is “to plug in” the appropriate matrices relating the interfacial concentrations to the fluxes.
Resumo:
An adaptive learning scheme, based on a fuzzy approximation to the gradient descent method for training a pattern classifier using unlabeled samples, is described. The objective function defined for the fuzzy ISODATA clustering procedure is used as the loss function for computing the gradient. Learning is based on simultaneous fuzzy decisionmaking and estimation. It uses conditional fuzzy measures on unlabeled samples. An exponential membership function is assumed for each class, and the parameters constituting these membership functions are estimated, using the gradient, in a recursive fashion. The induced possibility of occurrence of each class is useful for estimation and is computed using 1) the membership of the new sample in that class and 2) the previously computed average possibility of occurrence of the same class. An inductive entropy measure is defined in terms of induced possibility distribution to measure the extent of learning. The method is illustrated with relevant examples.
Resumo:
A dual representation scheme for performing arithmetic modulo an arbitrary integer M is presented. The coding scheme maps each integer N in the range 0 <= N < M into one of two representations, each being identified by its most significant bit. The encoding of numbers is straightforward and the problem of checking for unused combinations is eliminated.
Resumo:
The paper present a spectral iteration technique for the analysis of linear arrays of unequally spaced dipoles of unequal lengths. As an example, the Yagi-Uda array is considered for illustration. Analysis is carried out in both the spatial as well as the spectral domains, the two being linked by the Fourier transform. The fast Fourier transform algorithm is employed to obtain an iterative solution to the electric field integral equation and the need for matrix inversion is circumvented. This technique also provides a convenient means for testing the satisfaction of the boundary conditions on the array elements. Numerical comparison of the input impedance and radiation pattern have been made with results deduced elsewhere by other methods. The computational efficency of this technique has been found to be significant for large arrays.
Resumo:
The statistical minimum risk pattern recognition problem, when the classification costs are random variables of unknown statistics, is considered. Using medical diagnosis as a possible application, the problem of learning the optimal decision scheme is studied for a two-class twoaction case, as a first step. This reduces to the problem of learning the optimum threshold (for taking appropriate action) on the a posteriori probability of one class. A recursive procedure for updating an estimate of the threshold is proposed. The estimation procedure does not require the knowledge of actual class labels of the sample patterns in the design set. The adaptive scheme of using the present threshold estimate for taking action on the next sample is shown to converge, in probability, to the optimum. The results of a computer simulation study of three learning schemes demonstrate the theoretically predictable salient features of the adaptive scheme.
Resumo:
In this paper the notion of conceptual cohesiveness is precised and used to group objects semantically, based on a knowledge structure called ‘cohesion forest’. A set of axioms is proposed which should be satisfied to make the generated clusters meaningful.
Resumo:
Instead of waiting for the acknowledgments from all the copies of a single data block sent, as in the optimum generalised stop-and-wait ARQ scheme, the transmitter in the proposed scheme starts sending an optimum number of copies of the next block in the queue, soon after receiving the positive acknowledgment from the receiver, thereby further improving the throughput efficiency.
Resumo:
Multi-access techniques are widely used in computer networking and distributed multiprocessor systems. On-the-fly arbitration schemes permit one of the many contenders to access the medium without collisions. Serial arbitration is cost effective but is slow and hence unsuitable for high-speed multiprocessor environments supporting very high data transfer rates. A fully parallel arbitration scheme takes less time but is not practically realisable for large numbers of contenders. In this paper, a generalised parallel-serial scheme is proposed which significantly reduces the arbitration time and is practically realisable.