3 resultados para Isometric exercise

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown how to use non-commutative stopping times in order to stop the CCR flow of arbitrary index and also its isometric cocycles, i.e. left operator Markovian cocycles on Boson Fock space. Stopping the CCR flow yields a homomorphism from the semigroup of stopping times, equipped with the convolution product, into the semigroup of unital endomorphisms of the von Neumann algebra of bounded operators on the ambient Fock space. The operators produced by stopping cocycles themselves satisfy a cocycle relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isometric fluctuation relation (IFR) P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.