3 resultados para Isabel, Queen, consort of Philip II, King of Spain
em Indian Institute of Science - Bangalore - Índia
Resumo:
Queens and workers are not morphologically differentiated in the primitively eusocial wasp, Ropalidia marginata. Upon removal of the queen, one of the workers becomes extremely aggressive, but immediately drops her aggression if the queen is returned. If the queen is not returned, this hyper-aggressive individual, the potential queen (PQ), will develop her ovaries, lose her hyper-aggression, and become the next colony queen. Because of the non-aggressive nature of the queen, and because the PQ loses her aggression by the time she starts laying eggs, we hypothesized that regulation of worker reproduction in R marginata is mediated by pheromones rather than by physical aggression. Based on the immediate loss of aggression by the PQ upon return of the queen, we developed a bioassay to test whether the queen's Dufour's gland is, at least, one of the sources of the queen pheromone. Macerates of the queen's Dufour's gland, but not that of the worker's Dufour's gland, mimic the queen in making the PQ decrease her aggression. We also correctly distinguished queens and workers of R. marginata nests by a discriminant function analysis based on the chemical composition of their respective Dufour's glands.
Resumo:
A major question in current network science is how to understand the relationship between structure and functioning of real networks. Here we present a comparative network analysis of 48 wasp and 36 human social networks. We have compared the centralisation and small world character of these interaction networks and have studied how these properties change over time. We compared the interaction networks of (1) two congeneric wasp species (Ropalidia marginata and Ropalidia cyathiformis), (2) the queen-right (with the queen) and queen-less (without the queen) networks of wasps, (3) the four network types obtained by combining (1) and (2) above, and (4) wasp networks with the social networks of children in 36 classrooms. We have found perfect (100%) centralisation in a queen-less wasp colony and nearly perfect centralisation in several other queen-less wasp colonies. Note that the perfectly centralised interaction network is quite unique in the literature of real-world networks. Differences between the interaction networks of the two wasp species are smaller than differences between the networks describing their different colony conditions. Also, the differences between different colony conditions are larger than the differences between wasp and children networks. For example, the structure of queen-right R. marginata colonies is more similar to children social networks than to that of their queen-less colonies. We conclude that network architecture depends more on the functioning of the particular community than on taxonomic differences (either between two wasp species or between wasps and humans).
Resumo:
Social insects such as ants, bees, wasps and termites exhibit extreme forms of altruism where some individuals remain sterile and assist other individuals in reproduction. Hamilton's inclusive fitness theory provides a powerful framework for investigating the evolution of such altruism. Using the paper wasp Ropalidia marginata, we have quantified and delineated the role of ecological, physiological, genetic and demographic factors in social evolution. An interesting feature of the models we have developed is their symmetry so that either altruism or selfishness can evolve, depending on the numerical values of various parameters. This suggests that selfish/solitary behaviour must occasionally re-emerge even from the eusocial state, It is useful to contemplate expected intermediate states during such potential reversals. We can perhaps envisage three successive steps in such a hypothetical process: i) workers revolt against the hegemony of the queen and challenge her status as the sole reproductive, ii) workers stop producing queens and one or more of them function as egg layers (functional queen/s) capable of producing both haploid as well as diploid offspring and iii) social evolution reverses completely so that a eusocial species becomes solitary, at least facultatively. It appears that the third step, namely transition from eusociality to the solitary state, is rare and has been restricted to transitions from the primitively eusocial state only. The absence of transitions from the highly eusocial state to the solitary state may be attributed to a number of 'preventing mechanisms' such as (a) queen control of workers (b) loss of spermathecae and ability to mate (c) morphological specialization (d) caste polyethism and (e) homeostasis, which must each make the transition difficult and, taken together, perhaps very difficult. However, the discovery of a transition from the highly eusocial to the solitary state can hardly he ruled out, given that little or no effort has gone into its detection. In this paper I discuss social evolution and its possible reversal and cite potential examples of stages in the transition from the social to the solitary.