23 resultados para Irreducible trinomial

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we develop a cipher system based on finite field transforms. In this system, blocks of the input character-string are enciphered using congruence or modular transformations with respect to either primes or irreducible polynomials over a finite field. The polynomial system is shown to be clearly superior to the prime system for conventional cryptographic work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general derivation of the coupling constant relations which result on embedding a non-simple group like SU L (2) @ U(1) in a larger simple group (or graded Lie group) is given. It is shown that such relations depend only on the requirement (i) that the multiplet of vector fields form an irreducible representation of the unifying algebra and (ii) the transformation properties of the fermions under SU L (2). This point is illustrated in two ways, one by constructing two different unification groups containing the same fermions and therefore have same Weinberg angle; the other by putting different SU L (2) structures on the same fermions and consequently have different Weinberg angles. In particular the value sin~0=3/8 is characteristic of the sequential doublet models or models which invoke a large number of additional leptons like E 6, while addition of extra charged fermion singlets can reduce the value of sin ~ 0 to 1/4. We point out that at the present time the models of grand unification are far from unique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In these lectures we plan to present a survey of certain aspects of harmonic analysis on a Heisenberg nilmanifold Gammakslash}H-n. Using Weil-Brezin-Zak transform we obtain an explicit decomposition of L-2 (Gammakslash}H-n) into irreducible subspaces invariant under the right regular representation of the Heisenberg group. We then study the Segal-Bargmann transform associated to the Laplacian on a nilmanifold and characterise the image of L-2 (GammakslashH-n) in terms of twisted Bergman and Hermite Bergman spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the Y(gl(m|n)) super Yangian symmetry of the SU(m|n) supersymmetric Haldane-Shastry spin chain, we show that the partition function of this model satisfies a duality relation under the exchange of bosonic and fermionic spin degrees of freedom. As a byproduct of this study of the duality relation, we find a novel combinatorial formula for the super Schur polynomials associated with some irreducible representations of the Y(gl(m|n)) Yangian algebra. Finally, we reveal an intimate connection between the global SU(m|n) symmetry of a spin chain and the boson-fermion duality relation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that if (M-n, g), n >= 4, is a compact, orientable, locally irreducible Riemannian manifold with nonnegative isotropic curvature,then one of the following possibilities hold: (i) M admits a metric with positive isotropic curvature. (ii) (M, g) is isometric to a locally symmetric space. (iii) (M, g) is Kahler and biholomorphic to CPn/2. (iv) (M, g) is quaternionic-Kahler. This is implied by the following result: Let (M-2n, g) be a compact, locally irreducible Kahler manifold with nonnegative isotropic curvature. Then either M is biholomorphic to CPn or isometric to a compact Hermitian symmetric space. This answers a question of Micallef and Wang in the affirmative. The proof is based on the recent work of Brendle and Schoen on the Ricci flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

his paper addresses the problem of minimizing the number of columns with superdiagonal nonzeroes (viz., spiked columns) in a square, nonsingular linear system of equations which is to be solved by Gaussian elimination. The exact focus is on a class of min-spike heuristics in which the rows and columns of the coefficient matrix are first permuted to block lower-triangular form. Subsequently, the number of spiked columns in each irreducible block and their heights above the diagonal are minimized heuristically. We show that ifevery column in an irreducible block has exactly two nonzeroes, i.e., is a doubleton, then there is exactly one spiked column. Further, if there is at least one non-doubleton column, there isalways an optimal permutation of rows and columns under whichnone of the doubleton columns are spiked. An analysis of a few benchmark linear programs suggests that singleton and doubleton columns can abound in practice. Hence, it appears that the results of this paper can be practically useful. In the rest of the paper, we develop a polynomial-time min-spike heuristic based on the above results and on a graph-theoretic interpretation of doubleton columns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An explicit construction of all the homogeneous holomorphic Hermitian vector bundles over the unit disc D is given. It is shown that every such vector bundle is a direct sum of irreducible ones. Among these irreducible homogeneous holomorphic Hermitian vector bundles over D, the ones corresponding to operators in the Cowen-Douglas class B-n(D) are identified. The classification of homogeneous operators in B-n(D) is completed using an explicit realization of these operators. We also show how the homogeneous operators in B-n(D) split into similarity classes. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis, based on the metaplectic group Mp(2), of the recently introduced single-mode inverse creation and annihilation operators and of the associated eigenstates of different two-photon annihilation operators. We motivate and obtain a quantum operator form of the classical Mobius or fractional linear transformation. The subtle relation to the two unitary irreducible representations of Mp(2) is brought out. For problems involving inverse operators the usefulness of the Bargmann analytic function representation of quantum mechanics is demonstrated. Squeezing, bunching, and photon-number distributions of the four families of states that arise in this context are studied both analytically and numerically

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generalized Bose operators correspond to reducible representations of the harmonic oscillator algebra. We demonstrate their relevance in the construction of topologically non-trivial solutions in noncommutative gauge theories, focusing our attention to flux tubes, vortices, and instantons. Our method provides a simple new relation between the topological charge and the number of times the basic irreducible representation occurs in the reducible representation underlying the generalized Bose operator. When used in conjunction with the noncommutative ADHM construction, we find that these new instantons are in general not unitarily equivalent to the ones currently known in literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, Ebrahimi and Fragouli proposed an algorithm to construct scalar network codes using small fields (and vector network codes of small lengths) satisfying multicast constraints in a given single-source, acyclic network. The contribution of this paper is two fold. Primarily, we extend the scalar network coding algorithm of Ebrahimi and Fragouli (henceforth referred to as the EF algorithm) to block network-error correction. Existing construction algorithms of block network-error correcting codes require a rather large field size, which grows with the size of the network and the number of sinks, and thereby can be prohibitive in large networks. We give an algorithm which, starting from a given network-error correcting code, can obtain another network code using a small field, with the same error correcting capability as the original code. Our secondary contribution is to improve the EF Algorithm itself. The major step in the EF algorithm is to find a least degree irreducible polynomial which is coprime to another large degree polynomial. We suggest an alternate method to compute this coprime polynomial, which is faster than the brute force method in the work of Ebrahimi and Fragouli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let F be a non-archimedean local field and let O be its ring of integers. We give a complete description of the irreducible constituents of the restriction of the unramified principal series representations of GL(3)(F) to GL(3)(O). (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The explicit description of homogeneous operators and localization of a Hilbert module naturally leads to the definition of a class of Cowen-Douglas operators possessing a flag structure. These operators are irreducible. We show that the flag structure is rigid in the sense that the unitary equivalence class of the operator and the flag structure determine each other. We obtain a complete set of unitary invariants which are somewhat more tractable than those of an arbitrary operator in the Cowen-Douglas class. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.