197 resultados para Iron-doping
em Indian Institute of Science - Bangalore - Índia
Resumo:
The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.
Resumo:
Multiferroic nanoparticles (NPs) of pristine and Ca, Ba co-doped BiFeO3 were synthesized by a facile sal gel route. Co-doping was done by fixing the total dopant concentration at 5 mol% and then the relative concentrations of Ca and Ba was varied. Structural, optical and magnetic properties of the NPs were investigated using different techniques. UV-Vis absorption spectra of BiFeO3 NPs showed a substantial blue shift of similar to 100 nm (530 nm -> 430 nm) on Ca. Ba co-doping which corresponds to increase in band gap by 0.5 eV. Fe-57 Mossbauer spectroscopy confirmed that iron is present only in 3(+) valence state in all co-doped samples. The coercive field increased by 18 times for Bi0.95Ca0.01Ba0.04FeO3 samples, which is the maximum enhancement, observed amongst all the 5 mol% doped samples. At the equimolar (2.5 mol % each) concentration of co-dopants, the coercive field shows a significant enhancement of about 9 times (220 Oe -> 2014 Oe) with concomitant increase in saturation magnetization by 7 times. Thus, equimolar co-doping causes simultaneous enhancement of the twin aspects of magnetic properties thereby making them better suited for device applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report the single crystal growth of antimony doped Fe1+yTe and Fe1+yTe0.5Se0.5 (Fe1+ySbxTe1-x (x=0, 2%, 5%) and Fe1+yTe0.49Se0.49Sb0.02) by a modified horizontal Bridgman method. Growth parameters are optimized to obtain high quality single crystals. The antiferromagnetic (AFM) transition at T-N = 62.2 K which is a first order transition, shifts to lower temperature on doping in Fe1+yTe. Alternately when the chalcogen site of the ternary compound Fe1+yTe0.5Se0.5 is doped with Sb, superconductivity is preserved albeit the superconducting transition temperature (T-C) falls slightly and a concomitant reduction occurs in superconducting volume fraction. (C) 2013 Elsevier B.V. All rights reserved,
Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation
Resumo:
Interaction between Paenibacillus polymyxa with minerals such as hematite, corundum, quartz and kaolinite brought about significant surface chemical changes on all the minerals. Quartz and kaolinite were rendered more hydrophobic, while hematite and corundum, became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and corundum and of proteins on quartz and kaolinite was responsible for the above surface-chemical changes. Bio-pretreatment of the above iron ore mineral mixtures resulted in the selective separation of silica and alumina from iron oxide, through bioflotation and bioflocculation. The utility of bioprocessing in the beneficiation of iron ores is demonstrated.
Resumo:
Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.
Resumo:
Barium lanthanum bismuth titanate (Ba1−(3/2)xLaxBi4Ti4O15, x = 0–0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 < x ≤ 0.4). The dielectric relaxation was modelled using the Vogel–Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)–E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm−2 for pure BBT to 13.4 µC cm−2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.
Resumo:
Ternary iron(III) complexes (FeL(B)] (1-3) of a trianionic tetradentate phenolate-based ligand (L) and henanthroline base (B), namely, 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), have been prepared and structurally characterized and their DNA binding, cleavage, and photocytotoxic properties studied. The complexes with a FeN3O3 core show the Fe(III)/Fe(II) redox couple near -0.6 V in DMF, a magnetic moment value of similar to 5.9 mu(B), and a binding propensity to both calf thymus DNA and bovine serum albumin (BSA) protein. They exhibit red-light-induced DNA cleavage activity following a metal-assisted photoredox pathway forming HO center dot radicals but do not show any photocleavage of BSA in UV-A light. Complex 3 displays photocytotoxicity in the human cervical cancer cell line (HeLa) and human keratinocyte cell line (HaCaT) with respective IC50 values of 3.59 mu M and 6.07 mu M in visible light and 251 nM and 751 nM in UV-A light of 365 nm. No significant cytotoxicity is observed in the dark. The photoexposed HeLa cells, treated prior with complex 3, have shown marked changes in nuclear morphology as demonstrated by Hoechst 33258 nuclear stain. Generation of reactive oxygen species has been evidenced from the fluorescence enhancement of dichlorofluorescein upon treatment with 3 followed by photoexposure. Nuclear chromatin cleavage has been observed in acridine orange/ethidium bromide dual staining of treated HeLa cells and from alkaline single-cell gel electrophoresis. Caspase 3/7 activity in HeLa cells has been found to be upregulated by only 4 fold after photoirradiation, signifying the fact that cell death through a caspase 3/7 dependent pathway may not be solely operative.
Resumo:
The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.
Resumo:
Iron(III) complexes, (NHEt3)[Fe(III)(sal-met)(2)] and (NHEt3)[Fe(III)(sal-phe)(2)], of amino acid Schiffbase ligands, viz., N-salicylidene-L-methionine and N-salicylidene L-phenylalanine, have been prepared and their binding to bovine serum albumin (BSA) and photo-induced BSA cleavage activity have been investigated. The complexes are structurally characterized by single crystal X-ray crystallography. The crystal Structures of the discrete mononuclear rnonoanionic complexes show FeN2O4 octahedral coordination geometry in which the tridentate dianionic amino acid Schiff base ligand binds through phenolate and carboxylate oxygen and imine nitrogen atoms. The imine nitrogen atoms are trans to each other. The Fe-O and Fe-N bond distances range between 1.9 and 2.1 angstrom. The sal-met complex has two pendant thiomethyl groups. The high-spin iron(III) complexes (mu(eff) similar to 5.9 mu(B)) exhibit quasi-reversible Fe(III)/Fe(II) redox process near -0.6 V vs. SCE in water. These complexes display a visible electronic hand near 480 nm in tris-HCl buffer assignable to the phenolate-to-iron(III) charge transfer transition. The water soluble complexes bind to BSA giving binding constant values of similar to 10(5) M-1. The Complexes show non-specific oxidative cleavage of BSA protein on photo-irradiation with UV-A light of 365 nm.
Resumo:
Abstract is not available.
Resumo:
Coordination compounds of the polypyridines, 2,2 ' -bipyridine (bipy) and 1,10-penanthroline (phen) have offered renewed interest on account of their manifold applications and from the point of view of understanding their structure-reactivity relationships.1 Iron(II) reacts with them to form tris-complexes possessing spin-paired ground states. Cyanide ion greatly enhances the rate of displacement of bipy or phen to form the Schilt class of compounds. Fe(bipy)2(CN)2 and Fe(phen)2(CN)2. They display varying colours in solution depending upon the nature of the solvent and react reversibly with acids to form diprotonated species.2 Magnetic circular dichroism studies have been reported to describe their lowest electronic excitation.
Resumo:
Crystal growth of YIG from fluxes containing lead sulphate in place of lead oxide in the usual lead oxide-lead fluoride-boron oxide flux system has been tried. Lead sulphate decomposes during crystal growth giving lead oxide and sulphur trioxide. Due to the influence of sulphur trioxide in the system the yield of crystals almost doubles. There is no change either in the morphology of the crystals or their lattice parameter. It is possible that solubility of YIG is different in the new flux and the changed solubility causes the increase in yield of crystals.
Anthranilate Hydroxylase from Aspergillus niger: New Type of NADPH-Linked Nonheme Iron Monooxygenase
Resumo:
Anthranilate hydroxylase from Aspergillus niger catalyzes the oxidative deamination and dihydroxylation of anthranilic acid to 2,3-dihydroxybenzoic acid. This enzyme has been purified to homogeneity and has a molecular weight of 89,000. The enzyme is composed of two subunits of 42,000 with 2 gram-atoms of nonheme iron per mol. Fe2+-chelators like alpha,alpha'-dipyridyl and o-phenanthroline are potent inhibitors of the enzyme activity. Absorption and fluorescence spectra of the enzyme offer no evidence for the presence of other cofactors like flavin. Flavins and flavin-specific inhibitors like atebrin have no effect on the activity of the enzyme. The enzyme incorporates one atom of oxygen each from 18O2 and H218O into the product 2,3-dihydroxybenzoic acid. Based on these studies, it is concluded that anthranilate hydroxylase from A. niger is a new type of NADPH-linked nonheme iron monooxygenase.
Resumo:
Vermicular graphite cast iron is a new addition to the family of cast irons. Various methods for producing vermicular graphite cast iron are briefly discussed in this paper. The mechanical and physical properties of cast irons with vermicular graphite have been found to be intermediate between those of gray and ductile irons. Other properties such as casting characteristics, scaling resistance, damping capacity and machinability have been compared with those of gray and ductile irons. Probable applications of vermicular graphite cast irons are suggested.