24 resultados para Interval forecasting
em Indian Institute of Science - Bangalore - Índia
Resumo:
Northeast India and its adjoining areas are characterized by very high seismic activity. According to the Indian seismic code, the region falls under seismic zone V, which represents the highest seismic-hazard level in the country. This region has experienced a number of great earthquakes, such as the Assam (1950) and Shillong (1897) earthquakes, that caused huge devastation in the entire northeast and adjacent areas by flooding, landslides, liquefaction, and damage to roads and buildings. In this study, an attempt has been made to find the probability of occurrence of a major earthquake (M-w > 6) in this region using an updated earthquake catalog collected from different sources. Thereafter, dividing the catalog into six different seismic regions based on different tectonic features and seismogenic factors, the probability of occurrences was estimated using three models: the lognormal, Weibull, and gamma distributions. We calculated the logarithmic probability of the likelihood function (ln L) for all six regions and the entire northeast for all three stochastic models. A higher value of ln L suggests a better model, and a lower value shows a worse model. The results show different model suits for different seismic zones, but the majority follows lognormal, which is better for forecasting magnitude size. According to the results, Weibull shows the highest conditional probabilities among the three models for small as well as large elapsed time T and time intervals t, whereas the lognormal model shows the lowest and the gamma model shows intermediate probabilities. Only for elapsed time T = 0, the lognormal model shows the highest conditional probabilities among the three models at a smaller time interval (t = 3-15 yrs). The opposite result is observed at larger time intervals (t = 15-25 yrs), which show the highest probabilities for the Weibull model. However, based on this study, the IndoBurma Range and Eastern Himalaya show a high probability of occurrence in the 5 yr period 2012-2017 with >90% probability.
Resumo:
A k-cube (or ``a unit cube in k dimensions'') is defined as the Cartesian product R-1 x . . . x R-k where R-i (for 1 <= i <= k) is an interval of the form [a(i), a(i) + 1] on the real line. The k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that the k-cubes corresponding to two vertices in G have a non-empty intersection if and only if the vertices are adjacent. The cubicity of a graph G, denoted as cub(G), is defined as the minimum dimension k such that G has a k-cube representation. An interval graph is a graph that can be represented as the intersection of intervals on the real line - i. e., the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. We show that for any interval graph G with maximum degree Delta, cub(G) <= inverted right perpendicular log(2) Delta inverted left perpendicular + 4. This upper bound is shown to be tight up to an additive constant of 4 by demonstrating interval graphs for which cubicity is equal to inverted right perpendicular log(2) Delta inverted left perpendicular.
Resumo:
This paper presents a Chance-constraint Programming approach for constructing maximum-margin classifiers which are robust to interval-valued uncertainty in training examples. The methodology ensures that uncertain examples are classified correctly with high probability by employing chance-constraints. The main contribution of the paper is to pose the resultant optimization problem as a Second Order Cone Program by using large deviation inequalities, due to Bernstein. Apart from support and mean of the uncertain examples these Bernstein based relaxations make no further assumptions on the underlying uncertainty. Classifiers built using the proposed approach are less conservative, yield higher margins and hence are expected to generalize better than existing methods. Experimental results on synthetic and real-world datasets show that the proposed classifiers are better equipped to handle interval-valued uncertainty than state-of-the-art.
Resumo:
Technological forecasting, defined as quantified probabilistic prediction of timings and degree of change in the technological parameters, capabilities desirability or needs at different times in the future, is applied to birth control technology (BCT) as a means of revealing the paths of most promising research through identifying the necessary points for breakthroughs. The present status of BCT in the areas of pills and the IUD, male contraceptives, immumological approaches, post-coital pills, abortion, sterilization, luteolytic agents, laser technologies, and control of the sex of the child, are each summarized and evaluated in turn. Fine mapping is done to identify the most potentially promising areas of BCT. These include efforts to make oral contraception easier, improvement of the design of the IUD, clinical evaluation of the male contraceptive danazol, the effecting of biochemical changes in the seminal fluid, and researching of immunological approaches and the effects of other new drugs such as prostaglandins. The areas that require immediate and large research inputs are oral contraception and the IUD. On the basis of population and technological forecasts, it is deduced that research efforts could most effectively aid countries like India through the immediate production of an oral contraceptive pill or IUD with long-lasting effects. Development of a pill for males or an immunization against pre gnancy would also have a significant impact. However, the major impediment to birth control programs to date is attitudes, which must be changed through education.
Resumo:
An error-free computational approach is employed for finding the integer solution to a system of linear equations, using finite-field arithmetic. This approach is also extended to find the optimum solution for linear inequalities such as those arising in interval linear programming probloms.
Resumo:
Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional cube is a Cartesian product l(1) x l(2) x ... x l(b), where each l(i) is a closed interval of unit length on the real line. The cub/city of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line-i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number psi(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least log(2) psi(G)]. In this article, we show that for an interval graph G log(2) psi(G)-]<= cub(G)<=log(2) psi(G)]+2. It is not clear whether the upper bound of log(2) psi(G)]+2 is tight: till now we are unable to find any interval graph with cub(G)> (log(2)psi(G)]. We also show that for an interval graph G, cub(G) <= log(2) alpha], where alpha is the independence number of G. Therefore, in the special case of psi(G)=alpha, cub(G) is exactly log(2) alpha(2)]. The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a Cartesian product l(1) x l(2) x ... x l(b), where each I is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear that box(G)<= cub(G). From the above result, it follows that for any graph G, cub(G) <= box(G)log(2) alpha]. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323-333, 2010
Resumo:
In voiced speech analysis epochal information is useful in accurate estimation of pitch periods and the frequency response of the vocal tract system. Ideally, linear prediction (LP) residual should give impulses at epochs. However, there are often ambiguities in the direct use of LP residual since samples of either polarity occur around epochs. Further, since the digital inverse filter does not compensate the phase response of the vocal tract system exactly, there is an uncertainty in the estimated epoch position. In this paper we present an interpretation of LP residual by considering the effect of the following factors: 1) the shape of glottal pulses, 2) inaccurate estimation of formants and bandwidths, 3) phase angles of formants at the instants of excitation, and 4) zeros in the vocal tract system. A method for the unambiguous identification of epochs from LP residual is then presented. The accuracy of the method is tested by comparing the results with the epochs obtained from the estimated glottal pulse shapes for several vowel segments. The method is used to identify the closed glottis interval for the estimation of the true frequency response of the vocal tract system.
Resumo:
: We illustrate how climatological information about adverse weather events and meteorological forecasts (when available) can be used to decide between alternative strategies so as to maximize the long-term average returns for rainfed groundnut in semi-arid parts of Karnataka, We show that until the skill of the forecast, i.e. probability of an adverse event occurring when it is forecast, is above a certain threshold, the forecast has no impact on the optimum strategy, This threshold is determined by the loss in yield due to the adverse weather event and the cost of the mitigatory measures, For the specific case of groundnut, it is found that while for combating some pests/diseases, climatological information is adequate, for others a forecast of sufficient skill would have a significant impact on the productivity.
Resumo:
In this study, we investigated nonlinear measures of chaos of QT interval time series in 28 normal control subjects, 36 patients with panic disorder and 18 patients with major depression in supine and standing postures. We obtained the minimum embedding dimension (MED) and the largest Lyapunov exponent (LLE) of instantaneous heart rate (HR) and QT interval series. MED quantifies the system's complexity and LLE predictability. There was a significantly lower MED and a significantly increased LLE of QT interval time series in patients. Most importantly, nonlinear indices of QT/HR time series, MEDqthr (MED of QT/HR) and LLEqthr (LLE of QT/HR), were highly significantly different between controls and both patient groups in either posture. Results remained the same even after adjusting for age. The increased LLE of QT interval time, series in patients with anxiety and depression is in line with our previous findings of higher QTvi (QT variability index, a log ratio of QT variability corrected for mean QT squared divided by heart rate variability corrected for mean heart rate squared) in these patients, using linear techniques. Increased LLEqthr (LLE of QT/HR) may be a more sensitive tool to study cardiac repolarization and a valuable addition to the time domain measures such as QTvi. This is especially important in light of the finding that LLEqthr correlated poorly and nonsignificantly with QTvi. These findings suggest an increase in relative cardiac sympathetic activity and a decrease in certain aspects of cardiac vagal function in patients with anxiety as well as depression. The lack of correlation between QTvi and LLEqthr suggests that this nonlinear index is a valuable addition to the linear measures. These findings may also help to explain the higher incidence of cardiovascular mortality in patients with anxiety and depressive disorders. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.