140 resultados para Intersonic Shear Cracks

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A finite element model for the analysis of laminated composite cylindrical shells with through cracks is presented. The analysis takes into account anisotropic elastic behaviour, bending-extensional coupling and transverse shear deformation effects. The proposed finite element model is based on the approach of dividing a cracked configuration into triangular shaped singular elements around the crack tip with adjoining quadrilateral shaped regular elements. The parabolic isoparametric cylindrical shell elements (both singular and regular) used in this model employ independent displacement and rotation interpolation in the shell middle surface. The numerical comparisons show the evidence to the conclusion that the proposed model will yield accurate stress intensity factors from a relatively coarse mesh. Through the analysis of a pressurised fibre composite cylindrical shell with an axial crack, the effect of material orthotropy on the crack tip stress intensity factors is shown to be quite significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the feasibility of an on-line damage detection capability for helicopter main rotor blades made of composite material. Damage modeled in the composite is matrix cracking. A box-beam with stiffness properties similar to a hingeless rotor blade is designed using genetic algorithm for the typical [+/-theta(m)/90(n)](s) family of composites. The effect of matrix cracks is included in an analytical model of composite box-beam. An aeroelastic analysis of the helicopter rotor based on finite elements in space and time is used to study the effects of matrix cracking in the rotor blade in forward flight. For global fault detection, rotating frequencies, tip bending and torsion response, and blade root loads are studied. It is observed that the effect of matrix cracking on lag bending and elastic twist deflection at the blade tip and blade root yawing moment is significant and these parameters can be monitored for online health monitoring. For implementation of local fault detection technique, the effect on axial and shear strain, for matrix cracks in the whole blade as well as matrix cracks occurring locally is studied. It is observed that using strain measurement along the blade it is possible to locate the matrix cracks as well as to predict density of matrix cracks. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timoshenko's shear deformation theory is widely used for the dynamical analysis of shear-flexible beams. This paper presents a comparative study of the shear deformation theory with a higher order model, of which Timoshenko's shear deformation model is a special case. Results indicate that while Timoshenko's shear deformation theory gives reasonably accurate information regarding the set of bending natural frequencies, there are considerable discrepancies in the information it gives regarding the mode shapes and dynamic response, and so there is a need to consider higher order models for the dynamical analysis of flexure of beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability characteristics of a Helmholtz velocity profile in a stratified Boussinesq fluid in the presence of a rigid boundary is studied, A jump in the magnetic field is introduced at a level different from the velocity discontinuity. New unstable modes in addition to the Kelvin-Helmhottz mode are found. The wavelengths of these unstable modes are close to the wavelengths of internal Alfv6n gravity waves in the atmospher.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation by two-dimensional photoelastic technique is carried out to study the stress distribution and to determine the stress-intensity factors for arbitrarily oriented cracks in thin cylindrical shells subjected to torsion. A new method is employed to evaluate the pure and mixed-mode SIF's.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible fluid in the presence of a lower rigid boundary are studied. A jump in the Brunt-Vaisala frequency at a level different from the shear zone is introduced and the variation of the Brunt-Vaisala frequency with respect to the vertical coordinate in the middle layer of the three-layered model is considered. An analytic solution in each of the layers is obtained, and the dispersion relation is solved numerically for parameters relevant to the model. The effect of shear in the lowermost layer of the three-layered model for a Boussinesq fluid is discussed. The results are compared with the earlier studies of Lindzen and Rosenthal, and Sachdev and Satya Narayanan. In the present model, new unstable modes with larger growth rates are obtained and the most unstable gravity wave modes are found to agree closely with the observed ones at various heights. Physics of Fluids is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new binary law of velocity distribution has been developed to describe the velocity profile for the entire flow region. The law is a combination of logarithmic law, valid in the wall (inner) region, and parabolic law, valid in the core (outer) region of the flow. The validity of the law has been established based on earlier data on flat plates, rough and smooth pipes and experimental data obtained from rigid-walled open channels with plane sand beds. A procedure of estimating bed shear stress from the proposed law of velocity distribution using the measured velocity profile has been evolved. Bed shear estimates made according to this procedure are in agreement with the values obtained from uniform flow analysis in the case of open channel flow over a sediment bed. The proposed method of estimating the bed shear stress from the observed velocity profiles is found to be particularly useful in cases where it is difficult to determine precisely the true bed level, such as in the case of flow over sediment beds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure of a cast Al---Si alloy-graphite particle composite is examined using optical and analytical scanning electron microscopy. Specimens containing different percentages of graphite were machined by orthogonal planning with 25° and 45° rake angle tools at both 6.5 and 13.2 m min−1. The machining forces are reported and the chip-rake-face friction coefficients and shear flow stresses are calculated. It is shown that the reduction in machining forces with increasing graphite content is due mostly to a decrease in the shear flow stress rather than to lower chip-rake-face friction. Both the polished and the machined surfaces of the composite are rougher than those of the simple alloy, apparently owing to the greater porosity, the tearing out of graphite particles, or the opening of cracks at the graphite particles in the wake of the tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional analysis is presented for the bending problem of finite thick plates with through-the-thickness cracks. A general solution is obtained for Navier's equations of the theory of elasticity. It is found that the in-plane stresses and the transverse normal stress at the crack front are singular with an inverse square root singularity, while the transverse shear stresses are of the order of unity. Results from a numerical study indicate that the stress intensity factor, which varies across the thickness, is influenced by the thickness ratio in a significant manner. Results from a parametric study and those from a comparative study with existing finite element values are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.