78 resultados para Intersection
em Indian Institute of Science - Bangalore - Índia
Resumo:
We show that the algebraic intersection number of Scott and Swarup for splittings of free groups Coincides With the geometric intersection number for the sphere complex of the connected sum of copies of S-2 x S-1. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sets of multivalued dependencies (MVDs) having conflict-free covers are important to the theory and design of relational databases [2,12,15,16]. Their desirable properties motivate the problem of testing a set M of MVDs for the existence of a confiict-free cover. In [8] Goodman and Tay have proposed an approach based on the possible equivalence of M to a single (acyclic) join dependency (JD). We remark that their characterization does not lend an insight into the nature of such sets of MVDs. Here, we use notions that are intrinsic to MVDs to develop a new characterization. Our approach proceeds in two stages. In the first stage, we use the notion of “split-free” sets of MVDs and obtain a characterization of sets M of MVDs having split-free covers. In the second, we use the notion of “intersection” of MVDs to arrive at a necessary and sufficient condition for a split-free set of MVDs to be conflict-free. Based on our characterizations, we also give polynomial-time algorithms for testing whether M has split-free and conflict-free covers. The highlight of our approach is the clear insight it provides into the nature of sets of MVDs having conflict-free covers. Less emphasis is given in this paper to the actual efficiency of the algorthms. Finally, as a bonus, we derive a desirable property of split-free sets of MVDs,thereby showing that they are interesting in their own right.
Resumo:
The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.
Resumo:
Recently it has been proved that any arithmetically Cohen-Macaulay (ACM) bundle of rank two on a general, smooth hypersurface of degree at least three and dimension at least four is a sum of line bundles. When the dimension of the hypersurface is three, a similar result is true provided the degree of the hypersurface is at least six. We extend these results to complete intersection subvarieties by proving that any ACM bundle of rank two on a general, smooth complete intersection subvariety of sufficiently high multi-degree and dimension at least four splits. We also obtain partial results in the case of threefolds.
Resumo:
We consider the following question: Let S (1) and S (2) be two smooth, totally-real surfaces in C-2 that contain the origin. If the union of their tangent planes is locally polynomially convex at the origin, then is S-1 boolean OR S-2 locally polynomially convex at the origin? If T (0) S (1) a (c) T (0) S (2) = {0}, then it is a folk result that the answer is yes. We discuss an obstruction to the presumed proof, and provide a different approach. When dim(R)(T0S1 boolean AND T0S2) = 1, we present a geometric condition under which no consistent answer to the above question exists. We then discuss conditions under which we can expect local polynomial convexity.
Resumo:
A clear definition of an approximate parametrization of the curve of intersection of (n-1) implicit surfaces in Rn is given. It is justified that marching methods yield such an approximation.
Resumo:
We show that every graph of maximum degree 3 can be represented as the intersection graph of axis parallel boxes in three dimensions, that is, every vertex can be mapped to an axis parallel box such that two boxes intersect if and only if their corresponding vertices are adjacent. In fact, we construct a representation in which any two intersecting boxes just touch at their boundaries. Further, this construction can be realized in linear time.
Resumo:
We show that every graph of maximum degree 3 can be represented as the intersection graph of axis parallel boxes in three dimensions, that is, every vertex can be mapped to an axis parallel box such that two boxes intersect if and only if their corresponding vertices are adjacent. In fact, we construct a representation in which any two intersecting boxes touch just at their boundaries.
Resumo:
A unit cube in k-dimension (or a k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k, where each R-i is a closed interval on the real line of the form [a(j), a(i), + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. Many NP-complete graph problems can be solved efficiently or have good approximation ratios in graphs of low cubicity. In most of these cases the first step is to get a low dimensional cube representation of the given graph. It is known that for graph G, cub(G) <= left perpendicular2n/3right perpendicular. Recently it has been shown that for a graph G, cub(G) >= 4(Delta + 1) In n, where n and Delta are the number of vertices and maximum degree of G, respectively. In this paper, we show that for a bipartite graph G = (A boolean OR B, E) with |A| = n(1), |B| = n2, n(1) <= n(2), and Delta' = min {Delta(A),Delta(B)}, where Delta(A) = max(a is an element of A)d(a) and Delta(B) = max(b is an element of B) d(b), d(a) and d(b) being the degree of a and b in G, respectively , cub(G) <= 2(Delta' + 2) bar left rightln n(2)bar left arrow. We also give an efficient randomized algorithm to construct the cube representation of G in 3 (Delta' + 2) bar right arrowIn n(2)bar left arrow dimension. The reader may note that in general Delta' can be much smaller than Delta.
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), b(i)] on the real line. The boxicity of any graph G, box(G) is the minimum positive integer b such that G can be represented as the intersection graph of axis-parallel b-dimensional boxes. A b-dimensional cube is a Cartesian product R-1 x R-2 x ... x R-b, where each R-i (for 1 <= i <= b) is a closed interval of the form [a(i), a(i) + 1] on the real line. When the boxes are restricted to be axis-parallel cubes in b-dimension, the minimum dimension b required to represent the graph is called the cubicity of the graph (denoted by cub(G)). In this paper we prove that cub(G) <= inverted right perpendicularlog(2) ninverted left perpendicular box(G), where n is the number of vertices in the graph. We also show that this upper bound is tight.Some immediate consequences of the above result are listed below: 1. Planar graphs have cubicity at most 3inverted right perpendicularlog(2) ninvereted left perpendicular.2. Outer planar graphs have cubicity at most 2inverted right perpendicularlog(2) ninverted left perpendicular.3. Any graph of treewidth tw has cubicity at most (tw + 2) inverted right perpendicularlog(2) ninverted left perpendicular. Thus, chordal graphs have cubicity at most (omega + 1) inverted right erpendicularlog(2) ninverted left perpendicular and circular arc graphs have cubicity at most (2 omega + 1)inverted right perpendicularlog(2) ninverted left perpendicular, where omega is the clique number.
Resumo:
A k-dimensional box is the cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G,denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R-1 x R-2 x ... x R-k where each Ri is a closed interval on the real line of the form [a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G) <= t + inverted right perpendicularlog(n - t)inverted left perpendicular - 1 and box(G) <= left perpendiculart/2right perpendicular + 1, where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds. F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, box(G) <= left perpendicularn/2right perpendicular and cub(G) <= inverted right perpendicular2n/3inverted left perpendicular, where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then box(G) <= inverted right perpendicularn/4inverted left perpendicular and this bound is tight. We also show that if G is a bipartite graph then cub(G) <= n/2 + inverted right perpendicularlog n inverted left perpendicular - 1. We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to n/4. Interestingly, if boxicity is very close to n/2, then chromatic number also has to be very high. In particular, we show that if box(G) = n/2 - s, s >= 0, then chi (G) >= n/2s+2, where chi (G) is the chromatic number of G.
Resumo:
A k-cube (or ``a unit cube in k dimensions'') is defined as the Cartesian product R-1 x . . . x R-k where R-i (for 1 <= i <= k) is an interval of the form [a(i), a(i) + 1] on the real line. The k-cube representation of a graph G is a mapping of the vertices of G to k-cubes such that the k-cubes corresponding to two vertices in G have a non-empty intersection if and only if the vertices are adjacent. The cubicity of a graph G, denoted as cub(G), is defined as the minimum dimension k such that G has a k-cube representation. An interval graph is a graph that can be represented as the intersection of intervals on the real line - i. e., the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. We show that for any interval graph G with maximum degree Delta, cub(G) <= inverted right perpendicular log(2) Delta inverted left perpendicular + 4. This upper bound is shown to be tight up to an additive constant of 4 by demonstrating interval graphs for which cubicity is equal to inverted right perpendicular log(2) Delta inverted left perpendicular.
Resumo:
A k-dimensional box is the Cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G) is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. Halin graphs are the graphs formed by taking a tree with no degree 2 vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if G is a Halin graph that is not isomorphic to K-4, then box(G) = 2. In fact, we prove the stronger result that if G is a planar graph formed by connecting the leaves of any tree in a simple cycle, then box(G) = 2 unless G is isomorphic to K4 (in which case its boxicity is 1).
Resumo:
This paper describes an algorithm to compute the union, intersection and difference of two polygons using a scan-grid approach. Basically, in this method, the screen is divided into cells and the algorithm is applied to each cell in turn. The output from all the cells is integrated to yield a representation of the output polygon. In most cells, no computation is required and thus the algorithm is a fast one. The algorithm has been implemented for polygons but can be extended to polyhedra as well. The algorithm is shown to take O(N) time in the average case where N is the total number of edges of the two input polygons.