119 resultados para Intermetallic precipitates

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-Raman imaging of the distribution of Te precipitates in CdZnTe crystals in different phases is reported. For the normal phase of Te precipitates, the Raman modes appear centered around 121(A1), 141(E)/TO(CdTe) cm−1 and a weak mode around 92(E) cm−1 in CdZnTe indicating the presence of trigonal lattice of Te. Under high pressure phase, the volume of Te precipitates collapses, giving more bond energy resulting in the blueshift of the corresponding Raman bands. Also, the spatial distribution of the area ratio of 121 to 141 cm−1 Raman modes is used to quantify Te precipitates. Further, near-infrared microscopy images support these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel superplastic deformation in an intermetallic B2-NiAl nanowire of cross-sectional dimensions of similar to 20 angstrom with failure strain as high as similar to 700% at 700 K temperature is reported. The minimum temperature under which the superplasticity has been observed is around 0.36 T-m, which is much lower than 0.5 T-m (T-m = melting temperature i.e. 1911 K for bulk B2-NiAl). Superplasticity is observed due to transformation from crystalline phase to amorphous phase after yielding of the nanowire. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hot rolled two-phase Ti-22Al-25Nb (at.%) alloy containing the orthorhombic (O) and beta(B2) phases was subjected to thermal treatment under different conditions. The experiment was aimed to examine the recrystallization response of the beta(B2) phase (static and dynamic) to microstructure and crystallographic texture evolution using scanning electron microscopy coupled with electron backscattered diffraction (SEM-EBSD). Specimens rolled in the two-phase (O + beta(B2)) region consisted of highly deformed beta(B2) grains. The texture was close to that of the typical bcc deformation texture with a few additional texture components. A subsequent heat treatment of these rolled specimens in single beta(B2) phase region was characterized by static recrystallized beta(B2) grains with the final texture partly inherited from as-rolled material. In contrast, specimens rolled in the single beta(B2) region produced beta(B2) grains with the texture similar to that of completely dynamic recrystallized one. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Green's function technique is used in the scattering matrix formalism to compute the mean square displacement of hydrogen and deuterium interstitials in the intermetallic compound Fe0.5Ti0.5 for low hydrogen/deuterium concentration. The mean square amplitudes of the metal atoms surrounding the interstitial are found to be smaller than those for the host crystal. This anomalous effect is due to the stiffening of the lattice by the dissolved hydrogen or deuterium at low concentration. This type of effect is experimentally observed in the case of NbHx at low hydrogen concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoscale dispersions of intermetallic Ti2Ni particles in an ordered TiNi intermetallic matrix have been produced by rapid solidification processing of near equiatomic TiNi alloys containing small amount of Si utilising the principle of kinetic competition in the undercooled liquid, A detailed characterisation of the microstructures obtained by different processing conditions was carried out to establish the trend of the refinement of the scale of microstructure. The observed microstructural conditions are rationalised in terms of a metastable phase diagram and the Uhlmann, Chalmers and Jackson theory of the trapping of second phase particles by a moving interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pinning energy due to the elastic interaction of a semicoherent Y2BaCuO5 precipitate with the YBa2Cu3O7 matrix is computed. This is achieved by setting up dislocation arrays at the interface. The elastic stresses generated by such arrays are integrated over a fluxoid volume to obtain the energy. It is seen that this elastic interaction energy makes an additive contribution to the total J(c) value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the effects of constant and cyclic power loads on the evolution of interfacial reaction layers in lead-free solder interconnections are presented. Firstly, the differences in the growth behavior of intermetallic compound (IMC) layers at the cathode and anode sides of the interconnections are rationalized. This is done by considering the changes in the intrinsic fluxes of elements owing to electromigration as well as taking into account the fact that the growth of Cu3Sn and Cu6Sn5 are coupled via interfacial reactions. In this way, better understanding of the effect of electron flux on the growth of each individual layer in the Cu-Sn system can be achieved. Secondly, it is shown that there is a distinct difference between steady-state current stressing (constant current, constant temperature) and power cycling with alternating on- and off-cycle periods (accompanied by a change of temperature). The reasons behind the observed differences are subsequently discussed. Finally, special care is taken to ensure that the current densities are chosen in such a way that there is no risk for even partial melting of the solder interconnections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear experiments performed on steel disc with increasing load for monolithic MoSi2 of different densities and its composite with TiB2 showed three distinct wear regimes. The specimens exhibited severe wear rate below the lower and above the upper critical loads and mild wear in between the two critical loads. The increase in density of the monolith and the reinforcement of TiB2 were effective in reducing the coefficient of friction and the specific wear rate. The wear experiments have been performed in these three regimes (15, 50 and 75 N). The tribofilm formed on the pin surface was found to contain both pin and disc materials. The temperature of the pins during the sliding against EN-24 disc was calculated using one dimensional heat transfer equation at different loads for each composition. The composite experiences lower temperatures compared to the monoliths. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the symmetry-breaking transitions in equilibrium shapes of coherent precipitates in two-dimensional (2-D) systems under a plane-strain condition with the principal misfit strain components epsilon(xx)*. and epsilon(yy)*. For systems with cubic elastic moduli, we first show all the shape transitions associated with different values of t = epsilon(yy)*/epsilon(xx)*. We also characterize each of these transitions, by studying its dependence on elastic anisotropy and inhomogeneity. For systems with dilatational misfit (t = 1) and those with pure shear misfit (t = -1), the transition is from an equiaxed shape to an elongated shape, resulting in a break in rotational symmetry. For systems with nondilatational misfit (-1 < t < 1; t not equal 0), the transition involves a break in mirror symmetries normal to the x- and y-axes. The transition is continuous in all cases, except when 0 < t < 1. For systems which allow an invariant line (-1 less than or equal to t < 0), the critical size increases with an increase in the particle stiffness. However, for systems which do not allow an invariant line (0 < t less than or equal to 1), the critical size first decreases, reaches a minimum, and then starts increasing with increasing particle stiffness; moreover, the transition is also forbidden when the particle stiffness is greater than a critical value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of the confusion principle and size factor in glass formation has been explored by following different combinations of isoelectronic Ti, Zr and Hf metals. Four alloys of nominal composition Zr41.5Ti41.5Ni17, Zr41.5Hf41.5Ni17, Zr25Ti25Cu50 and Zr34Ti16Cu50 have been rapidly solidified to obtain an amorphous phase and their crystallisation behaviour has been studied. The Ti-Zr-Ni alloy crystallises in three steps. Initially this alloy precipitates icosahedral quasicrystalline phase, which on further heat treatment precipitates cF96 Zr2Ni phase. The Zr-Hf-Ni alloy can not be amorphised under the same experimental conditions. The amorphous Zr-Ti-Cu alloys at the initial stages of crystallisation phase-separateinto two amorphous phases and then on further heat treatment cF24 Cu5Zr and oC68 Cu10Zr7 phase are precipitated. The lower glass-forming abilityof Zr-Hf-Ni alloy and the crystallisation behaviour of the above alloys has been studied. The rationale behind nanoquasicrystallisation and the formation of other intermetallic phases has been explained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SrTiO3:Pr3+,Al3+ phosphor samples with varying ratios of Sr/Ti/Al were prepared by the gel-carbonate method and the mechanism of enhancement of the red photoluminescence intensity therein was investigated. The photoluminescence (PL) spectra of SrTiO3:Pr3+ show both D-1(2) --> H-3(4) and P-3(0) --> H-3(4) emission in the red and blue spectral regions, respectively, with comparable intensity. The emission intensity of D-1(2) --> H-3(4) is drastically enhanced by the incorporation of Al3+ and excess Ti4+ in the compositional range Sr(Ti,Al-y)(O3+3y/2):Pr3+ (0.2 less than or equal to y less than or equal to 0.4) and SrTi1+xAlyO3+z:Pr3+ (0.2 less than or equal to x less than or equal to 0.5; 0.05 less than or equal to y less than or equal to 0.1; z = 2x + 3y/2) with the complete disappearance of the blue band. This cannot be explained by the simple point defect model as the EPR studies do not show any evidence for the presence of electron or hole centers. TEM investigations show the presence of exsolved nanophases of SrAl12O19 and/or TiO2 in the grain boundary region as well as grain interiors as lamellae which, in turn, form the solid-state defects, namely, dislocation networks, stacking faults and crystallographic shear planes whereby the framework of corner shared TiO6 octehedra changes over to edge-sharing TiO5-AlO5 strands as indicated from the Al-27 MAS NMR studies. The presence of transitional nanophases and the associated defects modify the excitation-emission processes by way of formation of electronic sub-levels at 3.40 and 4.43 eV, leading to magnetic-dipole related red emission with enhanced intensity. This is evidenced by the fact that SrAl12O19:Pr3+,Ti4+ shows bright red emission whereas SrAl12O19:Pr3+ does not show red photoluminescence.