69 resultados para Interannual Variability
em Indian Institute of Science - Bangalore - Índia
Resumo:
1] The poor predictability of the Indian summer monsoon ( ISM) appears to be due to the fact that a large fraction of interannual variability (IAV) is governed by unpredictable "internal'' low frequency variations. Mechanisms responsible for the internal IAV of the monsoon have not been clearly identified. Here, an attempt has been made to gain insight regarding the origin of internal IAV of the seasonal ( June - September, JJAS) mean rainfall from "internal'' IAV of the ISM simulated by an atmospheric general circulation model (AGCM) driven by fixed annual cycle of sea surface temperature (SST). The underlying hypothesis that monsoon ISOs are responsible for internal IAV of the ISM is tested. The spatial and temporal characteristics of simulated summer intraseasonal oscillations ( ISOs) are found to be in good agreement with those observed. A long integration with the AGCM forced with observed SST, shows that ISO activity over the Asian monsoon region is not modulated by the observed SST variations. The internal IAV of ISM, therefore, appears to be decoupled from external IAV. Hence, insight gained from this study may be useful in understanding the observed internal IAV of ISM. The spatial structure of the ISOs has a significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season ( seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broad-band nature of the ISO spectrum allowing the time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relation is a manifestation of the binomial character of rainfall time series. The remaining 50% of the IAV may arise due to land-surface processes, interaction between high frequency variability and ISOs, etc.
Resumo:
The simulation of precipitation in a general circulation model relying on relaxed mass flux cumulus parameterization scheme is sensitive to cloud adjustment time scale (CATS). In this study, the frequency of the dominant intra-seasonal mode and interannual variability of Indian summer monsoon rainfall (ISMR) simulated by an atmospheric general circulation model is shown to be sensitive to the CATS. It has been shown that a longer CATS of about 5 h simulates the spatial distribution of the ISMR better. El Nio Southern Oscillation-ISMR relationship is also sensitive to CATS. The equatorial Indian Ocean rainfall and ISMR coupling is sensitive to CATS. Our study suggests that a careful choice of CATS is necessary for adequate simulation of spatial pattern as well as interannual variation of Indian summer monsoon precipitation.
Resumo:
The potential predictability of the Indian summer monsoon due to slowly varying sea surface temperature (SST) forcing is examined. Factors responsible for limiting the predictability are also investigated. Three multiyear simulations with the R30 version of the Geophysical Fluid Dynamics Laboratory's climate model are carried out for this purpose, The mean monsoon simulated by this model is realistic including the mean summer precipitation over the Indian continent. The interannual variability of the large-scale component of the monsoon such as the "monsoon shear index" and its teleconnection with Pacific SST is well simulated by the model in a 15-yr integration with observed SST as boundary condition. On regional scales, the skill in simulating the interannual variability of precipitation over the Indian continent by the model is rather modest and its simultaneous correlation with eastern Pacific SST is negative but poor as observed. The poor predictability of precipitation over the Indian region in the model is related to the fact that contribution to the interannual variability over this region due to slow SST variations [El Nino-Southern Oscillation (ENSO) related] is comparable to those due to regional-scale fluctuations unrelated to ENSO SST. The physical mechanism through which ENSO SST tend to produce reduction in precipitation over the Indian continent is also elucidated. A measure of internal variability of the model summer monsoon is obtained from a 20-yr integration of the same model with fixed annual cycle SST as boundary conditions but with predicted soil moisture and snow cover. A comparison of summer monsoon indexes between this run and the observed SST run shows that the internal oscillations can account for a large fraction of the simulated monsoon variability. The regional-scale oscillations in the observed SST run seems to arise from these internal oscillations. It is discovered that most of the interannual internal variability is due to an internal quasi-biennial oscillation (QBO) of the model atmosphere. Such a QBO is also found in the author's third 18-yr simulation in which fixed annual cycle of SST as well as soil moisture and snow cover are prescribed. This shows that the model QBO is not due to land-surface-atmosphere interaction. It is proposed that the model QBO arises due to an interaction between nonlinear intraseasonal oscillations and the annual cycle. Spatial structure of the QBO and its role in limiting the predictability of the Indian summer monsoon is discussed.
Resumo:
In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity.
Resumo:
The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatiotemporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of similar to 1200 km(3) is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and floodplains of the Amazon basin was, respectively, similar to 230 (similar to 40%) and 210 (similar to 50%) km(3) below the 1993-2007 average. This new 15 year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.
Resumo:
The physical mechanism through which Ei-Nino and Southern Oscillation (ENSO) tends to produce deficient precipitation over Indian continent is investigated using both observations as well as a general circulation model. Both analysis of observations and atmospheric general circulation model (AGCM) study show that the planetary scale response associated with ENSO primarily influences the equatorial Indian Ocean region. Through this interaction it tends to favour the equatorial heat source, enhance precipitation over the equatorial Indian Ocean and indirectly cause a decrease in continental precipitation through induced subsidence. This situation is further complicated by the fact the regional tropospheric quasi biennial oscillation (QBO) has a bimodal structure over this region with large amplitude over the Indian continent. While the ENSO response has a quasi-four year periodicity and tends peak during beginning of the calendar year, the QBO mode tends to peak during northern summer. Thus, the QBO mode exerts a stronger influence on the interannual variability of the monsoon. The strength of the Indian monsoon in a given year depends on the combined effect of the ENSO and the QBO mode. Sines the two oscillations have disparate time scales, exact phase information of the two modes during northern summer is important in determining the Indian summer monsoon. The physical mechanism of the interannual variations of the Indian monsoon precipitation associated with ENSO presented here is similar to the physical process that cause intraseasonal 'active', 'break' oscillations of the monsoon.
Resumo:
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Resumo:
Chital or axis deer (Axis axis) form fluid groups that change in size temporally and in relation to habitat. Predictions of hypotheses relating animal density, rainfall, habitat structure, and breeding seasonality, to changes in chital group size were assessed simultaneously using multiple regression models of monthly data collected over a 2 yr period in Guindy National Park, in southern India. Over 2,700 detections of chital groups were made during four seasons in three habitats (forest, scrubland and grassland). In scrubland and grassland, chital group size was positively related to animal density, which increased with rainfall. This suggests that in these habitats, chital density increases in relation to food availability, and group sizes increase due to higher encounter rate and fusion of groups. The density of chital in forest was inversely related to rainfall, but positively to the number of fruiting tree species and availability of fallen litter, their forage in this habitat. There was little change in mean group size in the forest, although chital density more than doubled during the dry season and summer. Dispersion of food items or the closed nature of the forest may preclude formation of larger groups. At low densities, group sizes in all three habitats were similar. Group sizes increased with chital density in scrubland and grassland, but more rapidly in the latter—leading to a positive relationship between openness and mean group size at higher densities. It is not clear, however, that this relationship is solely because of the influence of habitat structure. The rutting index (monthly percentage of adult males in hard antler) was positively related to mean group size in forest and scrubland, probably reflecting the increase in group size due to solitary males joining with females during the rut. The fission-fusion system of group formation in chital is thus interactively influenced by several factors. Aspects that need further study, such as interannual variability, are highlighted.
Resumo:
It has recently been proposed that the broad spectrum of interannual variability in the tropics with a peak around four years results from an interaction between the linear low-frequency oscillatory mode of the coupled system and the nonlinear higher-frequency modes of the system. In this study we determine the bispectrum of the conceptual model consisting of a nonlinear low-order model coupled to a linear oscillator for various values of the coupling constants.
Resumo:
The suitability of the European Centre for Medium Range Weather Forecasting (ECMWF) operational wind analysis for the period 1980-1991 for studying interannual variability is examined. The changes in the model and the analysis procedure are shown to give rise to a systematic and significant trend in the large scale circulation features. A new method of removing the systematic errors at all levels is presented using multivariate EOF analysis. Objectively detrended analysis of the three-dimensional wind field agrees well with independent Florida State University (FSU) wind analysis at the surface. It is shown that the interannual variations in the detrended surface analysis agree well in amplitude as well as spatial patterns with those of the FSU analysis. Therefore, the detrended analyses at other levels as well are expected to be useful for studies of variability and predictability at interannual time scales. It is demonstrated that this trend in the wind field is due to the shift in the climatologies from the period 1980-1985 to the period 1986-1991.
Resumo:
The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.
Resumo:
It has recently been proposed that the broad spectrum of interannual variability in the tropics with a peak around four years results from an interaction between the linear low-frequency oscillatory mode of the coupled system and the nonlinear higher-frequency modes of the system. In this study we determine the Lyapunov exponents of the conceptual model consisting of a nonlinear low-order model coupled to a linear oscillator for various values of the coupling constants.
Resumo:
Following the seminal work of Charney and Shukla (198 1), the tropical climate is recognised to be more predictable than extra tropical climate as it is largely forced by 'external' slowly varying forcing and less sensitive to initial conditions. However, the Indian summer monsoon is an exception within the tropics where 'internal' low frequency (LF) oscillations seem to make significant contribution to its interannual variability (IAV) and makes it sensitive to initial conditions. Quantitative estimate of contribution of 'internal' dynamics to IAV of Indian monsoon is made using long experiments with an atmospheric general circulation model (AGCM) and through analysis of long daily observations. Both AGCM experiments and observations indicate that more than 50% of IAV of the monsoon is contributed by 'internal' dynamics making the predictable signal (external component) burried in unpredictable noise (internal component) of comparable amplitude. Better understanding of the nature of the 'internal' LF variability is crucial for any improvement in predicition of seasonal mean monsoon. Nature of 'internal' LF variability of the monsoon and mechanism responsible for it are investigated and shown that vigorous monsoon intraseasonal oscillations (ISO's) with time scale between 10-70 days are primarily responsible for generating the 'internal' IAV. The monsoon ISO's do this through scale interactions with synoptic disturbances (1-7 day time scale) on one hand and the annual cycle on the other. The spatial structure of the monsoon ISO's is similar to that of the seasonal mean. It is shown that frequency of occurance of strong (weak) phases of the ISO is different in different seasons giving rise to stronger (weaker) than normal monsoon. Change in the large scale circulation during strong (weak) phases of the ISO make it favourable (inhibiting) for cyclogenesis and gives rise to space time clustering of synoptic activity. This process leads to enhanced (reduced) rainfall in seasons of higher frequency of occurence strong (weak) phases of monsoon ISO.
Resumo:
The failure of atmospheric general circulation models (AGCMs) forced by prescribed SST to simulate and predict the interannual variability of Indian/Asian monsoon has been widely attributed to their inability to reproduce the actual sea surface temperature (SST)-rainfall relationship in the warm Indo-Pacific oceans. This assessment is based on a comparison of the observed and simulated correlation between the rainfall and local SST. However, the observed SSTconvection/rainfall relationship is nonlinear and for this a linear measure such as the correlation is not an appropriate measure. We show that the SST-rainfall relationship simulated by atmospheric and coupled general circulation models in IPCC AR4 is nonlinear, as observed, and realistic over the tropical West Pacific (WPO) and the Indian Ocean (IO). The SST-rainfall pattern simulated by the coupled versions of these models is rather similar to that from the corresponding atmospheric one, except for a shift of the entire pattern to colder/warmer SSTs when there is a cold/warm bias in the coupled version.