83 resultados para Interacts

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the possible role of trans-acting factors interacting with the untranslated regions (UTRs) of coxsackievirus B3 (CVB3) RNA. We show here that polypyrimidine tract-binding protein (PTB) binds specifically to both 5' and 3' UTRs, but with different affinity. We have demonstrated that PTB is a bona fide internal ribosome entry site (IRES) trans-acting factor (ITAF) for CVB3 RNA by characterizing the effect of partial silencing of FIB ex vivo in He La cells. Furthermore, IRES activity in BSC-1 cells, which are reported to have a very low level of endogenous FIB, was found to be significantly lower than that in He La cells. Additionally, we have mapped the putative contact points of PTB on the 5' and 3' UTRs by an RNA toe-printing assay. We have shown that the 3' UTR is able to stimulate CVB3 IRES-mediated translation. Interestingly, a deletion of 15 nt at the 5' end or 14 rut at the 3' end of the CVB3 3' UTR reduced the 3' UTR-mediated enhancement of IRES activity ex vivo significantly, and a reduced interaction was shown with PTB. It appears that the FIB protein might help in circularization of the CVB3 RNA by bridging the ends necessary for efficient translation of the viral RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Methods Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90 degrees light scattering and FtsZ polymer pelleting assays. The gamma 32P-GTP synthesised by NDK from GDP and gamma 32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound P-32-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. Results NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK's NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Conclusion Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to -5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fenvalerate is a pyrethroid insecticide which interacts with ionic channels. Using circular dichroism technique we have studied the interaction of fenvalerate with gramicidin, a model channel peptide which transports ions. In most organic solvents, gramicidin exists as a double helix except in trifluoroethanol where it exists as a channel forming single stranded beta(6.3) helical monomer. In model lipid membranes, under certain experimental conditions, gramicidin exists as a channel forming single stranded beta(6.3) helical dimer. Our results show that fenvalerate interacts more with the single stranded beta(6.3) helical monomer or dimer than with the double helical form of gramicidin. This was further confirmed by an increase in the rate of gramicidin mediated proton transport in liposomes by fenvalerate, using the pH sensitive fluorophore, pyranine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential energy surfaces of the HCN<->HNC and LiCN<->LiNC isomerization processes were determined by ab initio theory using fully optimized triple-zeta double polarization types of basis sets. Both the MP2 corrections and the QCISD level of calculations were performed to correct for the electron correlation. Results show that electron correlation has a considerable influence on the energetics and structures. Analysis of the intramolecular bond rearrangement processes reveals that, in both cases, H (or Li+) migrates in an almost elliptic path in the plane of the molecule. In HCN<->HNC, the migrating hydrogen interacts with the in-plane pi,pi* orbitals of CN, leading to a decrease in the C-N bond order. In LiCN<->LiNC, Li+ does not interact with the corresponding pi,pi* orbitals of CN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

l-Lysine acetate crystallises in the monoclinic space group P21 with a = 5.411 (1), b = 7.562(1), c= l2.635(2) Å and β = 91.7(1). The crystal structure was solved by direct methods and refined to an R value of 0.049 using the full matrix least squares method. The conformation and the aggregation of lysine molecules in the structure are similar to those found in the crystal structure of l-lysine l-aspartate. A conspicuous similarity between the crystal structures of l-arginine acetate and l-lysine acetate is that in both cases the strongly basic side chain, although having the largest pK value, interacts with the weakly acidic acetate group leaving the α-amino and the α-carboxylate groups to take part in head-to-tail sequences. These structures thus indicate that electrostatic effects are strongly modulated by other factors so as to give rise to head-to-tail sequences which have earlier been shown to be an almost universal feature of amino acid aggregation in the solid state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparison of the DNase I digestion products of the 32P-5’-end-labeled pachytene nucleosome core particles (containing histones H2A, TH2A, X2, H2B, THPB, H3a, nd H4) and liver nucleosome core particles (containing somatic histones H2A, H2B, H3, and H4) revealed that the cleavage sites that are 30, 40, and 110 nucleotidesa way from the 5’-enda re significantly more accessiblei n the pachytene core particles than in the liver core particles. These cleavage sites correspond to the region wherein H2B interacts with the nucleosome core DNA. These results, therefore, suggest that the histone-DNA interactiona t these sites in the pachytene core particles is weaker, possibly because of the presence of the histone variant THBB interacting at similar topological positions in the nucleosome core as that of its somatic counterpart H2B. Such a loosened structumrea y also be maintainede ven in the native pachytene chromatin since micrococcal nuclease digestion of pachytene nuclei resulted in a higher ratio of subnucleosomes (SN4 + SN?) to mononucleosomes than that observed liinv er chromatin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcal protein A specifically interacts with immunogobulins. This fact is being used in various disciplines of biology and some of the unique properties of protein A and their applications are summarized in this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcal protein A specifically interacts with immunogobulins. This fact is being used in various disciplines of biology and some of the unique properties of protein A and their applications are summarized in this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grown Aspergillus niger was increased 3-5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH4 + , and further, the enzyme is repressed by increasing concentrations of NH4 +. In contrast to other micro-organisms, the Aspergillus niger enzyme was neither specifically inactivated by NH4+ or L-glutamine nor regulated by covalent modification.Glutamine synthetase from Aspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity.Aspergillus niger glutamine synthetase was completely inactivated by two mol of phenylglyoxal and one mol of N-ethylmaleimide with second order rate constants of 3·8 M–1 min–1 and 760 M–1 min–1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH4+, Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein-protein interactions play a Crucial role in Virus assembly and stability. With the view of disrupting capsid assembly and capturing smaller oligomers, interfacial residue mutations were carried Out in the coat protein gene of Sesbania Mosaic Virus, a T=3 ss (+) RNA plant virus. A single point mutation of a Trp 170 present at the five-fold interface of the virus to a charged residue (Glu or Lys) arrested assembly of virus like particles and resulted in stable Soluble dimers of the capsid Protein. The X-ray crystal structure of one of the isolated dimer mutants - rCP Delta N65W170K was determined to a resolution of 2.65 angstrom. Detailed analysis of the dimeric mutant protein structure revealed that a number of Structural changes take place, especially in the loop and interfacial regions during the course of assembly. The isolated chiller was ``more relaxed'' than the dimer found in the T=3 or T=1 capsids. The isolated dimer does not bind Ca2+ ion and consequently four C-terminal residues are disordered. The FG loop, which interacts with RNA in the Virus, has different conformations in the isolated dimer and the intact Virus Suggesting its flexible nature and the conformational changes that accompany assembly. The isolated choler mutant was much less stable when compared to the assembled capsids, suggesting the importance of inter-subunit interactions and Ca2+ mediated interactions in the stability of the capsids. With this study, SeMV becomes the first icosahedral virus for which X-ray crystal Structures of T=3, T=1 capsids as well as a smaller oligomer of the capsid protein have been determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of interaction of palladium(II) with calf thymus DNA was studied using viscometry, ultraviolet, visible and infrared spectrophotometry and optical rotatory disperison and circular dichroism measurements. The results indicate that Pd(II) interacts with both the phosphate and bases of DNA. The ORD/CD data indicate that the binding of Pd(II) to DNA brings about considerable conformational changes in DNA.