3 resultados para Intensive research
em Indian Institute of Science - Bangalore - Índia
Resumo:
The machine replication of human reading has been the subject of intensive research for more than three decades. A large number of research papers and reports have already been published on this topic. Many commercial establishments have manufactured recognizers of varying capabilities. Handheld, desk-top, medium-size and large systems costing as high as half a million dollars are available, and are in use for various applications. However, the ultimate goal of developing a reading machine having the same reading capabilities of humans still remains unachieved. So, there still is a great gap between human reading and machine reading capabilities, and a great amount of further effort is required to narrow-down this gap, if not bridge it. This review is organized into six major sections covering a general overview (an introduction), applications of character recognition techniques, methodologies in character recognition, research work in character recognition, some practical OCRs and the conclusions.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.