26 resultados para Intelligent vehicle highway systems

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of continuous curvature path planning for passages is considered. This problem arises when an autonomous vehicle traverses between prescribed boundaries such as corridors, tunnels, channels, etc. Passage boundaries with curvature and heading discontinuities pose challenges for generating smooth paths passing through them. Continuous curvature half-S shaped paths derived from the Four Parameter Logistic Curve family are proposed as a prospective path planning solution. Analytic conditions are derived for generating continuous curvature paths confined within the passage boundaries. Zero end curvature highlights the scalability of the proposed solution and its compatibility with other path planners in terms of larger path planning domains. Various scenarios with curvature and heading discontinuities are considered presenting viability of the proposed solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Belief revision systems aim at keeping a database consistent. They mostly concentrate on how to record and maintain dependencies. We propose an axiomatic system, called MFOT, as a solution to the problem of belief revision. MFOT has a set of proper axioms which selects a set of most plausible and consistent input beliefs. The proposed nonmonotonic inference rule further maintains consistency while generating the consequences of input beliefs. It also permits multiple property inheritance with exceptions. We have also examined some important properties of the proposed axiomatic system. We also propose a belief revision model that is object-centered. The relevance of such a model in maintaining the beliefs of a physician is examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple UAVs are deployed to carry out a search and destroy mission in a bounded region. The UAVs have limited sensor range and can carry limited resources which reduce with use. The UAVs perform a search task to detect targets. When a target is detected which requires different type and quantities of resources to completely destroy, then a team of UAVs called as a coalition is formed to attack the target. The coalition members have to modify their route to attack the target, in the process, the search task is affected, as search and destroy tasks are coupled. The performance of the mission is a function of the search and the task allocation strategies. Therefore, for a given task allocation strategy, we need to devise search strategies that are efficient. In this paper, we propose three different search strategies namely; random search strategy, lanes based search strategy and grid based search strategy and analyze their performance through Monte-Carlo simulations. The results show that the grid based search strategy performs the best but with high information overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of goal seeking by robots in unknown environments. We present a frontier based algorithm for finding a route to a goal in a fully unknown environment, where information about the goal region (GR), the region where the goal is most likely to be located, is available. Our algorithm efficiently chooses the best candidate frontier cell, which is on the boundary between explored space and unexplored space, having the maximum ``goal seeking index'', to reach the goal in minimal number of moves. Modification of the algorithm is also proposed to further reduce the number of moves toward the goal. The algorithm has been tested extensively in simulation runs and results demonstrate that the algorithm effectively directs the robot to the goal and completes the search task in minimal number of moves in bounded as well as unbounded environments. The algorithm is shown to perform as well as a state of the art agent centered search algorithm RTAA*, in cluttered environments if exact location of the goal is known at the beginning of the mission and is shown to perform better in uncluttered environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is +/-1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power system disturbances are often caused by faults on transmission lines. When faults occur in a power system, the protective relays detect the fault and initiate tripping of appropriate circuit breakers, which isolate the affected part from the rest of the power system. Generally Extra High Voltage (EHV) transmission substations in power systems are connected with multiple transmission lines to neighboring substations. In some cases mal-operation of relays can happen under varying operating conditions, because of inappropriate coordination of relay settings. Due to these actions the power system margins for contingencies are decreasing. Hence, power system protective relaying reliability becomes increasingly important. In this paper an approach is presented using Support Vector Machine (SVM) as an intelligent tool for identifying the faulted line that is emanating from a substation and finding the distance from the substation. Results on 24-bus equivalent EHV system, part of Indian southern grid, are presented for illustration purpose. This approach is particularly important to avoid mal-operation of relays following a disturbance in the neighboring line connected to the same substation and assuring secure operation of the power systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an approach for identifying the faulted line section and fault location on transmission systems using support vector machines (SVMs) for diagnosis/post-fault analysis purpose. Power system disturbances are often caused by faults on transmission lines. When fault occurs on a transmission system, the protective relay detects the fault and initiates the tripping operation, which isolates the affected part from the rest of the power system. Based on the fault section identified, rapid and corrective restoration procedures can thus be taken to minimize the power interruption and limit the impact of outage on the system. The approach is particularly important for post-fault diagnosis of any mal-operation of relays following a disturbance in the neighboring line connected to the same substation. This may help in improving the fault monitoring/diagnosis process, thus assuring secure operation of the power systems. In this paper we compare SVMs with radial basis function neural networks (RBFNN) in data sets corresponding to different faults on a transmission system. Classification and regression accuracy is reported for both strategies. Studies on a practical 24-Bus equivalent EHV transmission system of the Indian Southern region is presented for indicating the improved generalization with the large margin classifiers in enhancing the efficacy of the chosen model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design and development of a novel optical vehicle classifier system, which is based on interruption of laser beams, that is suitable for use in places with poor transportation infrastructure. The system can estimate the speed, axle count, wheelbase, tire diameter, and the lane of motion of a vehicle. The design of the system eliminates the need for careful optical alignment, whereas the proposed estimation strategies render the estimates insensitive to angular mounting errors and to unevenness of the road. Strategies to estimate vehicular parameters are described along with the optimization of the geometry of the system to minimize estimation errors due to quantization. The system is subsequently fabricated, and the proposed features of the system are experimentally demonstrated. The relative errors in the estimation of velocity and tire diameter are shown to be within 0.5% and to change by less than 17% for angular mounting errors up to 30 degrees. In the field, the classifier demonstrates accuracy better than 97.5% and 94%, respectively, in the estimation of the wheelbase and lane of motion and can classify vehicles with an average accuracy of over 89.5%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new approach for assessing power system voltage stability based on artificial feed forward neural network (FFNN). The approach uses real and reactive power, as well as voltage vectors for generators and load buses to train the neural net (NN). The input properties of the NN are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The performance of the trained NN is investigated on two systems under various voltage stability assessment conditions. Main advantage is that the proposed approach is fast, robust, accurate and can be used online for predicting the L-indices of all the power system buses simultaneously. The method can also be effectively used to determining local and global stability margin for further improvement measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extends the iterative linear matrix inequality algorithm (ILMI) for systems having non-ideal PI, PD and PID implementations. The new algorithm uses the practical implementation of the feedback blocksto form the equivalent static output feedback plant. The LMI based synthesis techniques are used in the algorithm to design a multi-loop, multi-objective fixed structure control. The benefits of such a control design technique are brought out by applying it to the lateral stabilizing and tracking feedback control problem of a 30cm wingspan micro air vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an algorithm for ``direct numerical integration'' of the initial value Differential-Algebraic Inequalities (DAI) in a time stepping fashion using a sequential quadratic programming (SQP) method solver for detecting and satisfying active path constraints at each time step. The activation of a path constraint generally increases the condition number of the active discretized differential algebraic equation's (DAE) Jacobian and this difficulty is addressed by a regularization property of the alpha method. The algorithm is locally stable when index 1 and index 2 active path constraints and bounds are active. Subject to available regularization it is seen to be stable for active index 3 active path constraints in the numerical examples. For the high index active path constraints, the algorithm uses a user-selectable parameter to perturb the smaller singular values of the Jacobian with a view to reducing the condition number so that the simulation can proceed. The algorithm can be used as a relatively cheaper estimation tool for trajectory and control planning and in the context of model predictive control solutions. It can also be used to generate initial guess values of optimization variables used as input to inequality path constrained dynamic optimization problems. The method is illustrated with examples from space vehicle trajectory and robot path planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.