31 resultados para Intelligence services
em Indian Institute of Science - Bangalore - Índia
Resumo:
With increased number of new services and users being added to the communication network, management of such networks becomes crucial to provide assured quality of service. Finding skilled managers is often a problem. To alleviate this problem and also to provide assistance to the available network managers, network management has to be automated. Many attempts have been made in this direction and it is a promising area of interest to researchers in both academia and industry. In this paper, a review of the management complexities in present day networks and artificial intelligence approaches to network management are presented. Published by Elsevier Science B.V.
Resumo:
This paper presents an intelligent procurement marketplace for finding the best mix of web services to dynamically compose the business process desired by a web service requester. We develop a combinatorial auction approach that leads to an integer programming formulation for the web services composition problem. The model takes into account the Quality of Service (QoS) and Service Level Agreements (SLA) for differentiating among multiple service providers who are capable of fulfilling a functionality. An important feature of the model is interface aware composition.
Resumo:
In this article, several basic swarming laws for Unmanned Aerial Vehicles (UAVs) are developed for both two-dimensional (2D) plane and three-dimensional (3D) space. Effects of these basic laws on the group behaviour of swarms of UAVs are studied. It is shown that when cohesion rule is applied an equilibrium condition is reached in which all the UAVs settle at the same altitude on a circle of constant radius. It is also proved analytically that this equilibrium condition is stable for all values of velocity and acceleration. A decentralised autonomous decision-making approach that achieves collision avoidance without any central authority is also proposed in this article. Algorithms are developed with the help of these swarming laws for two types of collision avoidance, Group-wise and Individual, in 2D plane and 3D space. Effect of various parameters are studied on both types of collision avoidance schemes through extensive simulations.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.
Resumo:
Provision of modern energy services for cooking (with gaseous fuels)and lighting (with electricity) is an essential component of any policy aiming to address health, education or welfare issues; yet it gets little attention from policy-makers. Secure, adequate, low-cost energy of quality and convenience is core to the delivery of these services. The present study analyses the energy consumption pattern of Indian domestic sector and examines the urban-rural divide and income energy linkage. A comprehensive analysis is done to estimate the cost for providing modern energy services to everyone by 2030. A public-private partnership-driven business model, with entrepreneurship at the core, is developed with institutional, financing and pricing mechanisms for diffusion of energy services. This approach, termed as EMPOWERS (entrepreneurship model for provision of wholesome energy-related basic services), if adopted, can facilitate large-scale dissemination of energy-efficient and renewable technologies like small-scale biogas/biofuel plants, and distributed power generation technologies to provide clean, safe, reliable and sustainable energy to rural households and urban poor. It is expected to integrate the processes of market transformation and entrepreneurship development involving government, NGOs, financial institutions and community groups as stakeholders. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Dissolved Gas Analysis (DGA) a non destructive test procedure, has been in vogue for a long time now, for assessing the status of power and related transformers in service. An early indication of likely internal faults that may exist in Transformers has been seen to be revealed, to a reasonable degree of accuracy by the DGA. The data acquisition and subsequent analysis needs an expert in the concerned area to accurately assess the condition of the equipment. Since the presence of the expert is not always guaranteed, it is incumbent on the part of the power utilities to requisition a well planned and reliable artificial expert system to replace, at least in part, an expert. This paper presents the application of Ordered Ant Mner (OAM) classifier for the prediction of involved fault. Secondly, the paper also attempts to estimate the remaining life of the power transformer as an extension to the elapsed life estimation method suggested in the literature.
Resumo:
Business processes and application functionality are becoming available as internal web services inside enterprise boundaries as well as becoming available as commercial web services from enterprise solution vendors and web services marketplaces. Typically there are multiple web service providers offering services capable of fulfilling a particular functionality, although with different Quality of Service (QoS). Dynamic creation of business processes requires composing an appropriate set of web services that best suit the current need. This paper presents a novel combinatorial auction approach to QoS aware dynamic web services composition. Such an approach would enable not only stand-alone web services but also composite web services to be a part of a business process. The combinatorial auction leads to an integer programming formulation for the web services composition problem. An important feature of the model is the incorporation of service level agreements. We describe a software tool QWESC for QoS-aware web services composition based on the proposed approach.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The swelling pressure of soil depends upon various soil parameters such as mineralogy, clay content, Atterberg's limits, dry density, moisture content, initial degree of saturation, etc. along with structural and environmental factors. It is very difficult to model and analyze swelling pressure effectively taking all the above aspects into consideration. Various statistical/empirical methods have been attempted to predict the swelling pressure based on index properties of soil. In this paper, the computational intelligence techniques artificial neural network and support vector machine have been used to develop models based on the set of available experimental results to predict swelling pressure from the inputs; natural moisture content, dry density, liquid limit, plasticity index, and clay fraction. The generalization of the model to new set of data other than the training set of data is discussed which is required for successful application of a model. A detailed study of the relative performance of the computational intelligence techniques has been carried out based on different statistical performance criteria.
Resumo:
The problem of quantification of intelligence of humans, and of intelligent systems, has been a challenging and controversial topic. IQ tests have been traditionally used to quantify human intelligence based on results of test designed by psychologists. It is in general very difficult to quantify intelligence. In this paper the authors consider a simple question-answering (Q-A) system and use this to quantify intelligence. The authors quantify intelligence as a vector with three components. The components consist of a measure of knowledge in asking questions, effectiveness of questions asked, and correctness of deduction. The authors formalize these parameters and have conducted experiments on humans to measure these parameters
Resumo:
The protein-protein docking programs typically perform four major tasks: (i) generation of docking poses, (ii) selecting a subset of poses, (iii) their structural refinement and (iv) scoring, ranking for the final assessment of the true quaternary structure. Although the tasks can be integrated or performed in a serial order, they are by nature modular, allowing an opportunity to substitute one algorithm with another. We have implemented two modular web services, (i) PRUNE: to select a subset of docking poses generated during sampling search (http://pallab.serc.iisc.ernet.in/prune) and (ii) PROBE: to refine, score and rank them (http://pallab.serc.iisc.ernet.in/probe). The former uses a new interface area based edge-scoring function to eliminate > 95% of the poses generated during docking search. In contrast to other multi-parameter-based screening functions, this single parameter based elimination reduces the computational time significantly, in addition to increasing the chances of selecting native-like models in the top rank list. The PROBE server performs ranking of pruned poses, after structure refinement and scoring using a regression model for geometric compatibility, and normalized interaction energy. While web-service similar to PROBE is infrequent, no web-service akin to PRUNE has been described before. Both the servers are publicly accessible and free for use.