46 resultados para Integrated Expert Systems
em Indian Institute of Science - Bangalore - Índia
Resumo:
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid-solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading-unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 10(6) for stress-free temperature-induced transformation and 10(4) for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress-strain hysteresis loop is observed for mechanical loading with higher rates.
Resumo:
We present a new, generic method/model for multi-objective design optimization of laminated composite components using a novel multi-objective optimization algorithm developed on the basis of the Quantum behaved Particle Swarm Optimization (QPSO) paradigm. QPSO is a co-variant of the popular Particle Swarm Optimization (PSO) and has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; Failure Mechanism based Failure criteria, Maximum stress failure criteria and the Tsai-Wu Failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences as well as fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Also, the performance of QPSO is compared with the conventional PSO.
Resumo:
The design optimization of laminated composites using naturally inspired optimization techniques such as vector evaluated particle swarm optimization (VEPSO) and genetic algorithms (GA) are used in this paper. The design optimization of minimum weight of the laminated composite is evaluated using different failure criteria. The failure criteria considered are maximum stress (MS), Tsai-Wu (TW) and failure mechanism based (FMB) failure criteria. Minimum weight of the laminates are obtained for different failure criteria using VEPSO and GA for different combinations of loading. From the study it is evident that VEPSO and GA predict almost the same minimum weight of the laminate for the given loading. Comparison of minimum weight of the laminates by different failure criteria differ for some loading combinations. The comparison shows that FMBFC provide better results for all combinations of loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Production scheduling in a flexible manufacturing system (FMS) is a real-time combinatorial optimization problem that has been proved to be NP-complete. Solving this problem needs on-line monitoring of plan execution and requires real-time decision-making in selecting alternative routings, assigning required resources, and rescheduling when failures occur in the system. Expert systems provide a natural framework for solving this kind of NP-complete problems.In this paper an expert system with a novel parallel heuristic approach is implemented for automatic short-term dynamic scheduling of FMS. The principal features of the expert system presented in this paper include easy rescheduling, on-line plan execution, load balancing, an on-line garbage collection process, and the use of advanced knowledge representational schemes. Its effectiveness is demonstrated with two examples.
Resumo:
Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Accurate estimation of mass transport parameters is necessary for overall design and evaluation processes of the waste disposal facilities. The mass transport parameters, such as effective diffusion coefficient, retardation factor and diffusion accessible porosity, are estimated from observed diffusion data by inverse analysis. Recently, particle swarm optimization (PSO) algorithm has been used to develop inverse model for estimating these parameters that alleviated existing limitations in the inverse analysis. However, PSO solver yields different solutions in successive runs because of the stochastic nature of the algorithm and also because of the presence of multiple optimum solutions. Thus the estimated mean solution from independent runs is significantly different from the best solution. In this paper, two variants of the PSO algorithms are proposed to improve the performance of the inverse analysis. The proposed algorithms use perturbation equation for the gbest particle to gain information around gbest region on the search space and catfish particles in alternative iterations to improve exploration capabilities. Performance comparison of developed solvers on synthetic test data for two different diffusion problems reveals that one of the proposed solvers, CPPSO, significantly improves overall performance with improved best, worst and mean fitness values. The developed solver is further used to estimate transport parameters from 12 sets of experimentally observed diffusion data obtained from three diffusion problems and compared with published values from the literature. The proposed solver is quick, simple and robust on different diffusion problems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
An integrated reservoir operation model is presented for developing effective operational policies for irrigation water management. In arid and semi-arid climates, owing to dynamic changes in the hydroclimatic conditions within a season, the fixed cropping pattern with conventional operating policies, may have considerable impact on the performance of the irrigation system and may affect the economics of the farming community. For optimal allocation of irrigation water in a season, development of effective mathematical models may guide the water managers in proper decision making and consequently help in reducing the adverse effects of water shortage and crop failure problems. This paper presents a multi-objective integrated reservoir operation model for multi-crop irrigation system. To solve the multi-objective model, a recent swarm intelligence technique, namely elitist-mutated multi-objective particle swarm optimisation (EM-MOPSO) has been used and applied to a case study in India. The method evolves effective strategies for irrigation crop planning and operation policies for a reservoir system, and thereby helps farming community in improving crop benefits and water resource usage in the reservoir command area.
Resumo:
The advent and evolution of geohazard warning systems is a very interesting study. The two broad fields that are immediately visible are that of geohazard evaluation and subsequent warning dissemination. Evidently, the latter field lacks any systematic study or standards. Arbitrarily organized and vague data and information on warning techniques create confusion and indecision. The purpose of this review is to try and systematize the available bulk of information on warning systems so that meaningful insights can be derived through decidable flowcharts, and a developmental process can be undertaken. Hence, the methods and technologies for numerous geohazard warning systems have been assessed by putting them into suitable categories for better understanding of possible ways to analyze their efficacy as well as shortcomings. By establishing a classification scheme based on extent, control, time period, and advancements in technology, the geohazard warning systems available in any literature could be comprehensively analyzed and evaluated. Although major advancements have taken place in geohazard warning systems in recent times, they have been lacking a complete purpose. Some systems just assess the hazard and wait for other means to communicate, and some are designed only for communication and wait for the hazard information to be provided, which usually is after the mishap. Primarily, systems are left at the mercy of administrators and service providers and are not in real time. An integrated hazard evaluation and warning dissemination system could solve this problem. Warning systems have also suffered from complexity of nature, requirement of expert-level monitoring, extensive and dedicated infrastructural setups, and so on. The user community, which would greatly appreciate having a convenient, fast, and generalized warning methodology, is surveyed in this review. The review concludes with the future scope of research in the field of hazard warning systems and some suggestions for developing an efficient mechanism toward the development of an automated integrated geohazard warning system. DOI: 10.1061/(ASCE)NH.1527-6996.0000078. (C) 2012 American Society of Civil Engineers.
Resumo:
Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.
Resumo:
An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.
Resumo:
The voltage stability control problem has become an important concern for utilities transmitting power over long distances. This paper presents an approach using fuzzy set theory for reactive power control with the purpose of improving the voltage stability of a power system. To minimize the voltage deviations from pre-desired values of all the load buses, using the sensitivities with respect to reactive power control variables form the basis of the proposed fuzzy logic control (FLC). Control variables considered are switchable VAR compensators, On Load Tap Changing (OLTC) transformers and generator excitations. Voltage deviations and controlling variables are translated into fuzzy set notations to formulate the relation between voltage deviations and controlling ability of controlling devices. The developed fuzzy system is tested on a few simulated practical Indian power systems and some IEEE standard test systems. The performance of the fuzzy system is compared with conventional optimization technique and results obtained are encouraging. Results obtained for a 24 - node equivalent EHV system of part of Indian southern grid and IEEE New England 39-bus system are presented for illustration purposes. The proposed Fuzzy-Expert technique is found suitable for on-line applications in energy control centre as the solution is obtained fast with significant speedups.