34 resultados para Insertion économique
em Indian Institute of Science - Bangalore - Índia
Resumo:
MeNCS undergoes insertion into the copper(I)-aryloxide bond to form [N-methylimino(aryloxy)methanethiolato]-copper(I) complexes. This insertion occurs in the absence of ancillary ligands unlike the analogous insertion of PhNCS. The reaction with 4-methylphenoxide results in the formation of hexakis[[N-methylimino(4-methylphenoxy) methanethiolato]copper(I)] (1), which has been characterized by X-ray crystallography. Crystal data for 1: hexagonal , a = 10.088(2) Angstrom, b = 11.302(1) Angstrom, c = 17.990(2) Angstrom, alpha = 94.06(1)degrees, beta = 95.22(2)degrees, gamma = 103.94(1)degrees, Z = 2, V = 1974.4(7) Angstrom(3), R = 0.0361. In the presence of of PPh(3), the insertion reaction becomes reversible. This allows the exchange of the heterocumulene MeNCS or the aryloxy group in these molecules with another heterocumulene or a phenol, respectively, when catalytic amounts of PPh(3) are added. Oligomers with exchanged heterocumulmes and phenols could be characterized by independent synthesis.
Resumo:
The reactions of terminal borylene complexes of the type [CpFe(CO)(2)(BNR2)](+) (R = `Pr, Cy) with heteroallenes have been investigated by quantum-chemical methods, in an attempt to explain the experimentally observed product distributions. Reaction with dicyclohexylcarbodiimide (CyNCNCy) gives a bis-insertion product, in which 1 equiv of carbodiimide is assimilated into each of the Fe=B and B=N double bonds to form a spirocyclic boronium system. In contrast, isocyanates (R'NCO, R' = Ph, 2,6-wXy1, CY; XYl = C6H3Me2) react to give isonitrile complexes of the type [CpFe(CO)(2)(CNR')]+, via a net oxygen abstraction (or formal metathesis) process. Both carbodiimide and socyanate substrates are shown to prefer initial attack at the Fe=B bond rather than the B=N bond of the borylene complex. Further mechanistic studies reveal that the carbodiimide reaction ultimately leads to the bis-insertion compounds [CpFe(CO)(2)C(NCy)(2)B(NCY)(2)CNR2](+), rather than to the isonitrile system [CpFe(CO)(2)(CNCy)](+), on the basis of both thermodynamic (product stability) and kinetic considerations (barrier heights). The mechanism of the initial carbodiimide insertion process is unusual in that it involves coordination of the substrate at the (borylene) ligand followed by migration of the metal fragment, rather than a more conventional process: i.e., coordination of the unsaturated substrate at the metal followed by ligand migration. In the case of isocyanate substrates, metathesis products are competitive with those from the insertion pathway. Direct, single-step metathesis reactivity to give products containing a coordinated isonitrile ligand (i.e. [CpFe(CO)(2)(CNR')](+)) is facile if initial coordination of the isocyanate at boron occurs via the oxygen donor (which is kinetically favored); insertion chemistry is feasible when the isocyanate attacks initially via the nitrogen atom. However, even in the latter case, further reaction of the monoinsertion product so formed with excess isocyanate offers a number of facile (low energetic barrier) routes which also generate ['CpFe(CO)(2)(CNR')](+), rather than the bis-insertion product [CpFe(CO)(2)C(NR')(O)B(NR')(O)CNR2](+) (i.e., the direct analogue of the observed products in the carbodiimide reaction).
Resumo:
The insertion of phenyl isocyanate into titanium isopropoxide leads to the formation of a dimeric complex [Ti(O ' Pr)(2)(mu-O ' Pr){C6H5N(O ' Pr)CO}](2) (1) which has been structurally characterized. Reaction of titanium isopropoxide with two and more than 2 equiv. of phenyl isocyanate is complicated by competitive, reversible insertion between the titanium carbamate and titanium isopropoxide. The ligand formed by insertion of phenyl isocyanate into the titanium carbamate has been structurally characterized in its protonated form C6H5N{C(O ' Pr)O}C(O)N(H)C6H5 (3aH). Insertion into the carbamate is kinetically favored whereas insertion into isopropoxide gives the thermodynamically favored product. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Manganese dioxide is known to be an important electroactive material for supercapacitors. Generally, delta-MnO2 is subjected to electrochemical characterization studies in aqueous electrolytes of Na2SO4. It exhibits capacitance behaviour in the potential range between 0 and 1.0 V vs. SCE (saturated calomel electrode). In the present study, it is shown that delta-MnO2 exhibits capacitance behaviour in Sr(NO3)(2) electrolytes also. The suitable potential range in this electrolyte is also found to be 0-1.0 V. Specific capacitancemeasured in Sr(NO3)(2) electrolyte is 192 F g(-1). X-ray photoelectron spectroscopy data confirm that Sr2+ ions get inserted onto delta-MnO2 anoparticles. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The startling increase in the occurrence of rifampicin (Rif) resistance in the clinical isolates of Mycobacterium tuberculosis worldwide is posing a serious concern to tuberculosis management. The majority of Rif resistance in bacteria arises from mutations in the RpoB subunit of the RNA polymerase. We isolated M. smegmatis strains harbouring either an insertion (6 aa) or a deletion (10 aa) in their RpoB proteins. Although these strains showed a compromised fitness for growth in 7H9 Middlebrook medium, their resistance to Rif was remarkably high. The attenuated growth of the strains correlated with decreased specific activities of the RNA polymerases from the mutants. While the RNA polymerases from the parent or a mutant strain (harbouring a frequently occurring mutation, H442Y, in RpoB) were susceptible to Rif-mediated inhibition of transcription from calf thymus DNA, those from the insertion and deletion mutants were essentially refractory to such inhibition. Three-dimensional structure modelling revealed that the RpoB amino acids that interact with Rif are either deleted or unable to interact with Rif due to their unsuitable spatial positioning in these mutants. We discuss possible uses of the RpoB mutants in studying transcriptional regulation in mycobacteria and as potential targets for drug design.
Resumo:
Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics innanoparticles of anatase polymorph of titania is discussed here.Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.
Resumo:
dThe work looks at the response to three-point loading of carbon-epoxy (CF-EP) composites with inserted buffer strip (BS) material. Short beam Shear tests were performed to study the load-deflection response as well as fracture features through macroscopy on the CF-EP system containing the interleaved PTFE-coated fabric material. Significant differences were noticed in the response of the CF-EP system to the bending process consequent to the architectural modification. It was inferred that introduction of small amounts of less adherent layers of material at specific locations causes a decrement in the load carrying capability. Further the number and the ease with which interface separation occurs is found to depend on the extent to which the inserted layer is present in either single or multiple layer positions.
Resumo:
Supercapacitor properties of MnO2 are studied generally in aqueous alkali metal salt solutions, often in a Na salt solution. During electrochemical discharge-charge processes, Na+ ions from the electrolyte get reversibly inserted/deinserted on the surface of MnO2 particles, which leads to redox reaction between MnOONa and MnO2. In the present study, it has been shown that MnO2 exhibits enhanced capacitance behaviour in a rare earth metal salt solution, namely, La(NO3)(3) solution in comparison with NaNO3 and Mg(NO3)(2) aqueous solutions. The specific capacitance increases with an increase in charge on the solution cation (Na+, Mg2+ and La3+). It is proposed that the number of surface sites for adsorption of cations remains unaltered in all solutions. The surface insertion of cation facilitates the reduction of Mn4+ in MnO2 to Mn3+ equivalent to the charge present on the cation. As the specific capacitance is related to the quantity of charge that is exchanged between the solid MnO2 and the aqueous solution, the trivalent cation (La3+) provides greater specific capacitance than in Mg(NO3)(2) and NaNO3 electrolytes. Accordingly, the number of Mn(IV)/Mn(III) redox pairs involved in the neighbourhood of the adsorption site is one, two and three when Na+, Mg2+ and La3+ ions, respectively, are adsorbed. (C) 2011 The Electrochemical Society. DOI: 10.1149/1.3565177] All rights reserved.
Resumo:
By employing EXAFS and magnetic measurements, it is shown that nanoparticles of nickel along with those of NiO are incorporated between the layers of a-zirconium phosphate (ZrP) by the thermal decomposition of nickel acetate intercalated in ZrP. The nickel nanoparticles are superparamagnetic. Hydrogen reduction produces small ferromagnetic nickel particles, most of which appear to be outside the interlayer space of ZrP.
Resumo:
We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn2+ concentration in the nanocrystals.
Resumo:
We report a reversible phase transformation of platelet-shaped ZnS nanostructures between wurtzite (WZ) and zinc blende (ZB) phases by reversible insertion/ ejection of dopant Mn(II) ions induced by a thermocyclic process. In a reaction flask loaded with WZ ZnS platelets and Mn molecular precursors, during heating Mn ions are incorporated and change the phase of the host nanostructures to ZB; during cooling Mn ions are spontaneously ejected, returning the host nanoplatelets to the original WZ phase. These reversible changes are monitored for several cycles with PL, EPR, XRD, and HRTEM. Interestingly, the (0001) WZ platelets transform to (110) ZB following a nucleation and growth process triggered by a local increase/depletion of the Mn2+ concentration in the nanocrystals.
Resumo:
Treatment of the diazo diones 11a-d with boron trifluoride diethyl etherate furnished the bicyclo[4.2.1]nonane-2,g-diones 15a-d in a highly regioselective manner. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Azophenol complexes of formulation [(η6-p-cymene)RuCl(Ln)] (1–6, n=1–6) were prepared by two synthetic methods involving either an oxygen insertion to the Ru---C bond in cycloruthenated precursors forming complexes 1 and 2 or from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with azophenol ligands (HL3–HL6) in the presence of sodium carbonate in CH2Cl2. The molecular structure of the 1-(phenylazo)-2-naphthol complex has been determined by X-ray crystallography. The complex has a η6-p-cymene group, a chloride and a bidentate N,O-donor azophenol ligand. The complexes have been characterized from NMR spectral data. The catalytic activity of the complexes has been studied for the conversion of acetophenone to the corresponding alcohol in the presence of KOH and isopropanol. Complexes 4 and 6 having a methoxy group attached to the ortho-position of the phenylazo moiety and 2 with a methyl group in the meta-position of the phenolic moiety show high percentage conversion (>84%).