48 resultados para Informed Decision
em Indian Institute of Science - Bangalore - Índia
Resumo:
Abstract-To detect errors in decision tables one needs to decide whether a given set of constraints is feasible or not. This paper describes an algorithm to do so when the constraints are linear in variables that take only integer values. Decision tables with such constraints occur frequently in business data processing and in nonnumeric applications. The aim of the algorithm is to exploit. the abundance of very simple constraints that occur in typical decision table contexts. Essentially, the algorithm is a backtrack procedure where the the solution space is pruned by using the set of simple constrains. After some simplications, the simple constraints are captured in an acyclic directed graph with weighted edges. Further, only those partial vectors are considered from extension which can be extended to assignments that will at least satisfy the simple constraints. This is how pruning of the solution space is achieved. For every partial assignment considered, the graph representation of the simple constraints provides a lower bound for each variable which is not yet assigned a value. These lower bounds play a vital role in the algorithm and they are obtained in an efficient manner by updating older lower bounds. Our present algorithm also incorporates an idea by which it can be checked whether or not an (m - 2)-ary vector can be extended to a solution vector of m components, thereby backtracking is reduced by one component.
Resumo:
The minimum cost classifier when general cost functionsare associated with the tasks of feature measurement and classification is formulated as a decision graph which does not reject class labels at intermediate stages. Noting its complexities, a heuristic procedure to simplify this scheme to a binary decision tree is presented. The optimizationof the binary tree in this context is carried out using ynamicprogramming. This technique is applied to the voiced-unvoiced-silence classification in speech processing.
Resumo:
Optimal bang-coast maintenance policies for a machine, subject to failure, are considered. The approach utilizes a semi-Markov model for the system. A simplified model for modifying the probability of machine failure with maintenance is employed. A numerical example is presented to illustrate the procedure and results.
Resumo:
In this paper we present a novel algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess goodness of hyperplanes at each node. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy, based on some recent variants of SVM, to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. We show through empirical studies that our method is effective.
Resumo:
We develop a simulation based algorithm for finite horizon Markov decision processes with finite state and finite action space. Illustrative numerical experiments with the proposed algorithm are shown for problems in flow control of communication networks and capacity switching in semiconductor fabrication.
Resumo:
Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.
Resumo:
We present the theoretical foundations for the multiple rendezvous problem involving design of local control strategies that enable groups of visibility-limited mobile agents to split into subgroups, exhibit simultaneous taxis behavior towards, and eventually rendezvous at, multiple unknown locations of interest. The theoretical results are proved under certain restricted set of assumptions. The algorithm used to solve the above problem is based on a glowworm swarm optimization (GSO) technique, developed earlier, that finds multiple optima of multimodal objective functions. The significant difference between our work and most earlier approaches to agreement problems is the use of a virtual local-decision domain by the agents in order to compute their movements. The range of the virtual domain is adaptive in nature and is bounded above by the maximum sensor/visibility range of the agent. We introduce a new decision domain update rule that enhances the rate of convergence by a factor of approximately two. We use some illustrative simulations to support the algorithmic correctness and theoretical findings of the paper.
Resumo:
Production scheduling in a flexible manufacturing system (FMS) is a real-time combinatorial optimization problem that has been proved to be NP-complete. Solving this problem needs on-line monitoring of plan execution and requires real-time decision-making in selecting alternative routings, assigning required resources, and rescheduling when failures occur in the system. Expert systems provide a natural framework for solving this kind of NP-complete problems.In this paper an expert system with a novel parallel heuristic approach is implemented for automatic short-term dynamic scheduling of FMS. The principal features of the expert system presented in this paper include easy rescheduling, on-line plan execution, load balancing, an on-line garbage collection process, and the use of advanced knowledge representational schemes. Its effectiveness is demonstrated with two examples.
Resumo:
In this paper we present a novel macroblock mode decision algorithm to speedup H.264/SVC Intra frame encoding. We replace the complex mode-decision calculations by a classifier which has been trained specifically to minimize the reduction in RD performance. This results in a significant speedup in encoding. The results show that machine learning has a great potential and can reduce the complexity substantially with negligible impact on quality. The results show that the proposed method reduces encoding time to about 70% in base layer and up to 50% in enhancement layer of the reference implementation with a negligible loss in quality.
Resumo:
We develop in this article the first actor-critic reinforcement learning algorithm with function approximation for a problem of control under multiple inequality constraints. We consider the infinite horizon discounted cost framework in which both the objective and the constraint functions are suitable expected policy-dependent discounted sums of certain sample path functions. We apply the Lagrange multiplier method to handle the inequality constraints. Our algorithm makes use of multi-timescale stochastic approximation and incorporates a temporal difference (TD) critic and an actor that makes a gradient search in the space of policy parameters using efficient simultaneous perturbation stochastic approximation (SPSA) gradient estimates. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal policy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).
Resumo:
The aim of this paper is to develop a computationally efficient decentralized rendezvous algorithm for a group of autonomous agents. The algorithm generalizes the notion of sensor domain and decision domain of agents to enable implementation of simple computational algorithms. Specifically, the algorithm proposed in this paper uses a rectilinear decision domain (RDD) as against the circular decision domain assumed in earlier work. Because of this, the computational complexity of the algorithm reduces considerably and, when compared to the standard Ando's algorithm available in the literature, the RDD algorithm shows very significant improvement in convergence time performance. Analytical results to prove convergence and supporting simulation results are presented in the paper.
Resumo:
In this paper we develop a Linear Programming (LP) based decentralized algorithm for a group of multiple autonomous agents to achieve positional consensus. Each agent is capable of exchanging information about its position and orientation with other agents within their sensing region. The method is computationally feasible and easy to implement. Analytical results are presented. The effectiveness of the approach is illustrated with simulation results.