14 resultados para Informative voting
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider a variant of the popular matching problem here. The input instance is a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$, where vertices in $\mathcal{A}$ are called applicants and vertices in $\mathcal{P}$ are called posts. Each applicant ranks a subset of posts in an order of preference, possibly involving ties. A matching $M$ is popular if there is no other matching $M'$ such that the number of applicants who prefer their partners in $M'$ to $M$ exceeds the number of applicants who prefer their partners in $M$ to $M'$. However, the “more popular than” relation is not transitive; hence this relation is not a partial order, and thus there need not be a maximal element here. Indeed, there are simple instances that do not admit popular matchings. The questions of whether an input instance $G$ admits a popular matching and how to compute one if it exists were studied earlier by Abraham et al. Here we study reachability questions among matchings in $G$, assuming that $G=(\mathcal{A}\cup\mathcal{P},E)$ admits a popular matching. A matching $M_k$ is reachable from $M_0$ if there is a sequence of matchings $\langle M_0,M_1,\dots,M_k\rangle$ such that each matching is more popular than its predecessor. Such a sequence is called a length-$k$ voting path from $M_0$ to $M_k$. We show an interesting property of reachability among matchings in $G$: there is always a voting path of length at most 2 from any matching to some popular matching. Given a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$ with $n$ vertices and $m$ edges and any matching $M_0$ in $G$, we give an $O(m\sqrt{n})$ algorithm to compute a shortest-length voting path from $M_0$ to a popular matching; when preference lists are strictly ordered, we have an $O(m+n)$ algorithm. This problem has applications in dynamic matching markets, where applicants and posts can enter and leave the market, and applicants can also change their preferences arbitrarily. After any change, the current matching may no longer be popular, in which case we are required to update it. However, our model demands that we switch from one matching to another only if there is consensus among the applicants to agree to the switch. Hence we need to update via a voting path that ends in a popular matching. Thus our algorithm has applications here.
Resumo:
In the POSSIBLE WINNER problem in computational social choice theory, we are given a set of partial preferences and the question is whether a distinguished candidate could be made winner by extending the partial preferences to linear preferences. Previous work has provided, for many common voting rules, fixed parameter tractable algorithms for the POSSIBLE WINNER problem, with number of candidates as the parameter. However, the corresponding kernelization question is still open and in fact, has been mentioned as a key research challenge 10]. In this paper, we settle this open question for many common voting rules. We show that the POSSIBLE WINNER problem for maximin, Copeland, Bucklin, ranked pairs, and a class of scoring rules that includes the Borda voting rule does not admit a polynomial kernel with the number of candidates as the parameter. We show however that the COALITIONAL MANIPULATION problem which is an important special case of the POSSIBLE WINNER problem does admit a polynomial kernel for maximin, Copeland, ranked pairs, and a class of scoring rules that includes the Borda voting rule, when the number of manipulators is polynomial in the number of candidates. A significant conclusion of our work is that the POSSIBLE WINNER problem is harder than the COALITIONAL MANIPULATION problem since the COALITIONAL MANIPULATION problem admits a polynomial kernel whereas the POSSIBLE WINNER problem does not admit a polynomial kernel. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Probably the most informative description of the ground slate of a magnetic molecular species is provided by the spin density map. Such a map may be experimentally obtained from polarized neutron diffraction (PND) data or theoretically calculated using quantum chemical approaches. Density functional theory (DFT) methods have been proved to be well-adapted for this. Spin distributions in one-dimensional compounds may also be computed using the density matrix renormalization group (DMRG) formalism. These three approaches, PND, DFT, and DMRG, have been utilized to obtain new insights on the ground state of two antiferromagnetically coupled Mn2+Cu2+ compounds, namely [Mn(Me-6-[14]ane-N-4)Cu(oxpn)](CF3SO3)(2) and MnCu(pba)(H2O)(3) . 2H(2)O, with Me-6-[14]ane-N-4 = (+/-)-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, oxpn = N,N'-bis(3-aminopropyl)oxamido and pba = 1,3-propylenebis(oxamato). Three problems in particular have been investigated: the spin distribution in the mononuclear precursors [Cu(oxpn)] and [Cu(pba)](2-), the spin density maps in the two Mn2+Cu2+ compounds, and the evolution of the spin distributions on the Mn2+ and Cu2+ sites when passing from a pair to a one-dimensional ferrimagnet.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
Groundwater constitutes a vital natural resource for sustaining India’s agricultural economy and meeting the country’s social, ecological and environmental goals. It is a unique resource, widely available, providing security against droughts and yet it is closely linked to surface-water resources and the hydrological cycle. Its availability depends on geo-hydrological conditions and characteristics of aquifers, from deep to alluvium, sediment crystalline rocks to basalt formations; and agro-climate from humid to subhumid and semi-arid to arid. Its reliable supply, uniform quality and temperature, relative turbidity, pollution-safe, minimal evaporation losses, and low cost of development are attributes making groundwater more attractive compared to other resources. It plays a key role in the provision of safe drinking water to rural populations. For example, already almost 80% of domestic water use in rural areas in India is groundwater-supplied, and much of it is being supplied to farms, villages and small towns. Inadequate control of the use of groundwater, indiscriminate application of agrochemicals and unrestrained pollution of the rural environment by other human activities make groundwater usage unsustainable, necessitating proper management in the face of the twin demand for water of good quality for domestic supply and adequate supply for irrigation, ensuring equity, efficiency and sustainability of the resource. Groundwater irrigation has overtaken surface irrigation in the early 1980s, supported by well energization. It is estimated that there are about 24 million energised wells and tube wells now and it is driven by demand rather than availability, evident through the greater occurrence of wells in districts with high population densities. Apart from aquifer characteristics, land fragmentation and landholding size are the factors that decide the density of wells. The ‘rise and fall’ of local economies dependent on groundwater can be summarized as: the green revolution of 1980s, groundwaterbased agrarian boom, early symptoms of groundwater overdraft, and decline of the groundwater socio-ecology. The social characteristics and policy interventions typical of each stage provide a fascinating insight into the human-resource dynamics. This book is a compilation of nine research papers discussing various aspects of groundwater management. It attempts to integrate knowledge about the physical system, the socio-economic system, the institutional set-up and the policy environment to come out with a more realistic analysis of the situation with regard to the nature, characteristics and intensity of resource use, the size of the economy the use generates, and the negative socioeconomic consequences. Complex variables addressed in this regard focusing on northern Gujarat are the stock of groundwater available in the region, its hydrodynamics, its net outflows against inflows, the economics of its intensive use (particularly irrigation in semi-arid and arid regions), its criticality in the regional hydroecological regime, ethical aspects and social aspects of its use. The first chapter by Dinesh Kumar and Singh, dwells on complex groundwater socio-ecology of India, while emphasizing the need for policy measures to address indiscriminate over-exploitation of dwindling resources. The chapter also explores the nature of groundwater economy and the role of electricity prices on it. The next chapter on groundwater issue in north Gujarat provides a description of groundwater resource characteristics followed by a detailed analysis of the groundwater depletion and quality deterioration problems in the region and their undesirable consequences on the economy, ecosystem health and the society. Considering water-buyers and wellowning farmers individually, a methodology for economic valuation of groundwater in regions where its primary usage is in agriculture, and as assessment of the groundwater economy based on case studies from north Gujarat is presented in the fourth chapter. The next chapter focuses on the extent of dependency of milk production on groundwater, which includes the water embedded in green and dry fodder and animal feed. The study made a realistic estimate of irrigation water productivity in terms of the physics and economics of milk production. The sixth chapter analyses the extent of reduction in water usage, increase in yield and overall increase in physical productivity of alfalfa with the use of the drip irrigation system. The chapter also provides a detailed synthesis of the costs and benefits associated with the use of drip irrigation systems. A linear programmingbased optimization model with the objective to minimize groundwater use taking into account the interaction between two distinct components – farming and dairying under the constraints of food security and income stability for different scenarios, including shift in cropping pattern, introduction of water-efficient crops, water- saving technologies in addition to the ‘business as usual’ scenario is presented in the seventh chapter. The results show that sustaining dairy production in the region with reduced groundwater draft requires crop shifts and adoption of water-saving technologies. The eighth chapter provides evidences to prove that the presence of adequate economic incentive would encourage farmers to adopt water-saving irrigation devices, based on the findings of market research with reference to the level of awareness among farmers of technologies and the factors that decide the adoption of water-saving technologies. However, now the marginal cost of using electricity for agricultural pumping is almost zero. The economic incentives are strong and visible only when the farmers are either water-buyers or have to manage irrigation with limited water from tube-well partnerships. The ninth chapter explores the socio-economic viability of increasing the power tariff and inducing groundwater rationing as a tool for managing energy and groundwater demand, considering the current estimate of the country’s annual economic loss of Rs 320 billion towards electricity subsidy in the farm sector. The tenth chapter suggests private tradable property rights and development of water markets as the institutional tool for achieving equity, efficiency and sustainability of groundwater use. It identifies the externalities for local groundwater management and emphasizes the need for managing groundwater by local user groups, supported by a thorough analysis of groundwater socio-ecology in India. An institutional framework for managing the resource based on participatory approach that is capable of internalizing the externalities, comprising implementation of institutional and technical alternatives for resource management is also presented. Major findings of the analyses and key arguments in each chapter are summarized in the concluding chapter. Case studies of the social and economic benefits of groundwater use, where that use could be described as unsustainable, are interesting. The benefits of groundwater use are outlined and described with examples of social and economic impacts of groundwater and the negative aspects of groundwater development with the compilation of environmental problems based on up-to-date research results. This publication with a well-edited compilation of case studies is informative and constitutes a useful publication for students and professionals.
Resumo:
Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
Mutations in the MCPH1 (microcephalin 1) gene, located at chromosome 8p23.1, result in two autosomal recessive disorders: primary microcephaly and premature chromosome condensation syndrome. MCPH1 has also been shown to be downregulated in breast, prostate and ovarian cancers, and mutated in 1/10 breast and 5/41 endometrial tumors, suggesting that it could also function as a tumor suppressor (TS) gene. To test the possibility of MCPH1 as a TS gene, we first performed LOH study in a panel of 81 matched normal oral tissues and oral squamous cell carcinoma (OSCC) samples, and observed that 14/71 (19.72%) informative samples showed LOH, a hallmark of TS genes. Three protein truncating mutations were identified in 1/15 OSCC samples and 2/5 cancer cell lines. MCPH1 was downregulated at both the transcript and protein levels in 21/41 (51.22%) and 19/25 (76%) OSCC samples respectively. A low level of MCPH1 promoter methylation was also observed in 4/40 (10%) tumor samples. We further observed that overexpression of MCPH1 decreased cellular proliferation, anchorage-independent growth in soft agar, cell invasion and tumor size in nude mice, indicating its tumor suppressive function. Using bioinformatic approaches and luciferase assay, we showed that the 3'-UTR of MCPH1 harbors two non-overlapping functional seed regions for miR-27a which negatively regulated its level. The expression level of miR-27a negatively correlated with the MCPH1 protein level in OSCC. Our study indicates for the first time that, in addition to its role in brain development, MCPH1 also functions as a tumor suppressor gene and is regulated by miR-27a.
Resumo:
The presence of a large number of spectral bands in the hyperspectral images increases the capability to distinguish between various physical structures. However, they suffer from the high dimensionality of the data. Hence, the processing of hyperspectral images is applied in two stages: dimensionality reduction and unsupervised classification techniques. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The selected dimensions are classified using Niche Hierarchical Artificial Immune System (NHAIS). The NHAIS combines the splitting method to search for the optimal cluster centers using niching procedure and the merging method is used to group the data points based on majority voting. Results are presented for two hyperspectral images namely EO-1 Hyperion image and Indian pines image. A performance comparison of this proposed hierarchical clustering algorithm with the earlier three unsupervised algorithms is presented. From the results obtained, we deduce that the NHAIS is efficient.
Resumo:
Identifying symmetry in scalar fields is a recent area of research in scientific visualization and computer graphics communities. Symmetry detection techniques based on abstract representations of the scalar field use only limited geometric information in their analysis. Hence they may not be suited for applications that study the geometric properties of the regions in the domain. On the other hand, methods that accumulate local evidence of symmetry through a voting procedure have been successfully used for detecting geometric symmetry in shapes. We extend such a technique to scalar fields and use it to detect geometrically symmetric regions in synthetic as well as real-world datasets. Identifying symmetry in the scalar field can significantly improve visualization and interactive exploration of the data. We demonstrate different applications of the symmetry detection method to scientific visualization: query-based exploration of scalar fields, linked selection in symmetric regions for interactive visualization, and classification of geometrically symmetric regions and its application to anomaly detection.
Resumo:
Mountain waves in the stratosphere have been observed over elevated topographies using both nadir-looking and limb-viewing satellites. However, the characteristics of mountain waves generated over the Himalayan Mountain range and the adjacent Tibetan Plateau are relatively less explored. The present study reports on three-dimensional (3-D) properties of a mountain wave event that occurred over the western Himalayan region on 9 December 2008. Observations made by the Atmospheric Infrared Sounder on board the Aqua and Microwave Limb Sounder on board the Aura satellites are used to delineate the wave properties. The observed wave properties such as horizontal (lambda(x), lambda(y)) and vertical (lambda(z)) wavelengths are 276 km (zonal), 289 km (meridional), and 25 km, respectively. A good agreement is found between the observed and modeled/analyzed vertical wavelength for a stationary gravity wave determined using the Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis winds. The analysis of both the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and MERRA winds shows that the waves are primarily forced by strong flow across the topography. Using the 3-D properties of waves and the corrected temperature amplitudes, we estimated wave momentum fluxes of the order of similar to 0.05 Pa, which is in agreement with large-amplitude mountain wave events reported elsewhere. In this regard, the present study is considered to be very much informative to the gravity wave drag schemes employed in current general circulation models for this region.
Resumo:
A balance between excitatory and inhibitory synaptic currents is thought to be important for several aspects of information processing in cortical neurons in vivo, including gain control, bandwidth and receptive field structure. These factors will affect the firing rate of cortical neurons and their reliability, with consequences for their information coding and energy consumption. Yet how balanced synaptic currents contribute to the coding efficiency and energy efficiency of cortical neurons remains unclear. We used single compartment computational models with stochastic voltage-gated ion channels to determine whether synaptic regimes that produce balanced excitatory and inhibitory currents have specific advantages over other input regimes. Specifically, we compared models with only excitatory synaptic inputs to those with equal excitatory and inhibitory conductances, and stronger inhibitory than excitatory conductances (i.e. approximately balanced synaptic currents). Using these models, we show that balanced synaptic currents evoke fewer spikes per second than excitatory inputs alone or equal excitatory and inhibitory conductances. However, spikes evoked by balanced synaptic inputs are more informative (bits/spike), so that spike trains evoked by all three regimes have similar information rates (bits/s). Consequently, because spikes dominate the energy consumption of our computational models, approximately balanced synaptic currents are also more energy efficient than other synaptic regimes. Thus, by producing fewer, more informative spikes approximately balanced synaptic currents in cortical neurons can promote both coding efficiency and energy efficiency.
Resumo:
Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.
Resumo:
The problem of scaling up data integration, such that new sources can be quickly utilized as they are discovered, remains elusive: Global schemas for integrated data are difficult to develop and expand, and schema and record matching techniques are limited by the fact that data and metadata are often under-specified and must be disambiguated by data experts. One promising approach is to avoid using a global schema, and instead to develop keyword search-based data integration-where the system lazily discovers associations enabling it to join together matches to keywords, and return ranked results. The user is expected to understand the data domain and provide feedback about answers' quality. The system generalizes such feedback to learn how to correctly integrate data. A major open challenge is that under this model, the user only sees and offers feedback on a few ``top-'' results: This result set must be carefully selected to include answers of high relevance and answers that are highly informative when feedback is given on them. Existing systems merely focus on predicting relevance, by composing the scores of various schema and record matching algorithms. In this paper, we show how to predict the uncertainty associated with a query result's score, as well as how informative feedback is on a given result. We build upon these foundations to develop an active learning approach to keyword search-based data integration, and we validate the effectiveness of our solution over real data from several very different domains.