6 resultados para Information science research

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade. DOI: 10.1115/1.3593409]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Product success is substantially influenced by satisfaction of knowledge needs of designers, and many tools and methods have been proposed to support these needs. However, adoption of these methods in industry is minimal. This may be due to an inadequate understanding of the knowledge needs of designers in industry. This research attempts to develop a better understanding of these needs by undertaking descriptive studies in an industry. We propose a taxonomy of knowledge, and evaluate this by analyzing the questions asked by the designers involved in the study during their interactions. Using the taxonomy, we converted the questions asked into a generic form. The generic questions provide an understanding about what knowledge must be captured during design, and what its structure should be.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Quantum ensembles form easily accessible architectures for studying various phenomena in quantum physics, quantum information science and spectroscopy. Here we review some recent protocols for measurements in quantum ensembles by utilizing ancillary systems. We also illustrate these protocols experimentally via nuclear magnetic resonance techniques. In particular, we shall review noninvasive measurements, extracting expectation values of various operators, characterizations of quantum states and quantum processes, and finally quantum noise engineering.