8 resultados para Information science|Computer science
em Indian Institute of Science - Bangalore - Índia
Resumo:
One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade. DOI: 10.1115/1.3593409]
Resumo:
We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.
Resumo:
Quantum ensembles form easily accessible architectures for studying various phenomena in quantum physics, quantum information science and spectroscopy. Here we review some recent protocols for measurements in quantum ensembles by utilizing ancillary systems. We also illustrate these protocols experimentally via nuclear magnetic resonance techniques. In particular, we shall review noninvasive measurements, extracting expectation values of various operators, characterizations of quantum states and quantum processes, and finally quantum noise engineering.
Resumo:
Understanding of the shape and size of different features of the human body from scanned data is necessary for automated design and evaluation of product ergonomics. In this paper, a computational framework is presented for automatic detection and recognition of important facial feature regions, from scanned head and shoulder polyhedral models. A noise tolerant methodology is proposed using discrete curvature computations, band-pass filtering, and morphological operations for isolation of the primary feature regions of the face, namely, the eyes, nose, and mouth. Spatial disposition of the critical points of these isolated feature regions is analyzed for the recognition of these critical points as the standard landmarks associated with the primary facial features. A number of clinically identified landmarks lie on the facial midline. An efficient algorithm for detection and processing of the midline, using a point sampling technique, is also presented. The results obtained using data of more than 20 subjects are verified through visualization and physical measurements. A color based and triangle skewness based schemes for isolation of geometrically nonprominent features and ear region are also presented. [DOI: 10.1115/1.3330420]
Resumo:
Product success is substantially influenced by satisfaction of knowledge needs of designers, and many tools and methods have been proposed to support these needs. However, adoption of these methods in industry is minimal. This may be due to an inadequate understanding of the knowledge needs of designers in industry. This research attempts to develop a better understanding of these needs by undertaking descriptive studies in an industry. We propose a taxonomy of knowledge, and evaluate this by analyzing the questions asked by the designers involved in the study during their interactions. Using the taxonomy, we converted the questions asked into a generic form. The generic questions provide an understanding about what knowledge must be captured during design, and what its structure should be.
Resumo:
Current design models and frameworks describe various overlapping fragments of designing. However, little effort exists in consolidating these fragments into an integrated model. We propose a model of designing that integrates product and process facets of designing by combining activities, outcomes, requirements, and solutions. Validation of the model using video protocols of design sessions demonstrates that all the constructs are used naturally by designers but often not to the expected level, which hinders the variety and resulting novelty of the concepts developed in these sessions. To resolve this, a prescriptive framework for supporting design for variety and novelty is proposed and plans for its implementation are created. DOI: 10.1115/1.3467011]