7 resultados para Information needs

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We conducted surveys of fire and fuels managers at local, regional, and national levels to gain insights into decision processes and information flows in wildfire management. Survey results in the form of fire managers’ decision calendars show how climate information needs vary seasonally, over space, and through the organizational network, and help determine optimal points for introducing climate information and forecasts into decision processes. We identified opportunities to use climate information in fire management, including seasonal to interannual climate forecasts at all organizational levels, to improve the targeting of fuels treatments and prescribed burns, the positioning and movement of initial attack resources, and staffing and budgeting decisions. Longer-term (5–10 years) outlooks also could be useful at the national level in setting budget and research priorities. We discuss these opportunities and examine the kinds of organizational changes that could facilitate effective use of existing climate information and climate forecast capabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the on-going design and implementation of a sensor network for agricultural management targeted at resource-poor farmers in India. Our focus on semi-arid regions led us to concentrate on water-related issues. Throughout 2004, we carried out a survey on the information needs of the population living in a cluster of villages in our study area. The results highlighted the potential that environment-related information has for the improvement of farming strategies in the face of highly variable conditions, in particular for risk management strategies (choice of crop varieties, sowing and harvest periods, prevention of pests and diseases, efficient use of irrigation water etc.). This leads us to advocate an original use of Information and Communication Technologies (ICT). We believe our demand-driven approach for the design of appropriate ICT tools that are targeted at the resource-poor to be relatively new. In order to go beyond a pure technocratic approach, we adopted an iterative, participatory methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Product success is substantially influenced by satisfaction of knowledge needs of designers, and many tools and methods have been proposed to support these needs. However, adoption of these methods in industry is minimal. This may be due to an inadequate understanding of the knowledge needs of designers in industry. This research attempts to develop a better understanding of these needs by undertaking descriptive studies in an industry. We propose a taxonomy of knowledge, and evaluate this by analyzing the questions asked by the designers involved in the study during their interactions. Using the taxonomy, we converted the questions asked into a generic form. The generic questions provide an understanding about what knowledge must be captured during design, and what its structure should be.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production scheduling in a flexible manufacturing system (FMS) is a real-time combinatorial optimization problem that has been proved to be NP-complete. Solving this problem needs on-line monitoring of plan execution and requires real-time decision-making in selecting alternative routings, assigning required resources, and rescheduling when failures occur in the system. Expert systems provide a natural framework for solving this kind of NP-complete problems.In this paper an expert system with a novel parallel heuristic approach is implemented for automatic short-term dynamic scheduling of FMS. The principal features of the expert system presented in this paper include easy rescheduling, on-line plan execution, load balancing, an on-line garbage collection process, and the use of advanced knowledge representational schemes. Its effectiveness is demonstrated with two examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper primarily intends to develop a GIS (geographical information system)-based data mining approach for optimally selecting the locations and determining installed capacities for setting up distributed biomass power generation systems in the context of decentralized energy planning for rural regions. The optimal locations within a cluster of villages are obtained by matching the installed capacity needed with the demand for power, minimizing the cost of transportation of biomass from dispersed sources to power generation system, and cost of distribution of electricity from the power generation system to demand centers or villages. The methodology was validated by using it for developing an optimal plan for implementing distributed biomass-based power systems for meeting the rural electricity needs of Tumkur district in India consisting of 2700 villages. The approach uses a k-medoid clustering algorithm to divide the total region into clusters of villages and locate biomass power generation systems at the medoids. The optimal value of k is determined iteratively by running the algorithm for the entire search space for different values of k along with demand-supply matching constraints. The optimal value of the k is chosen such that it minimizes the total cost of system installation, costs of transportation of biomass, and transmission and distribution. A smaller region, consisting of 293 villages was selected to study the sensitivity of the results to varying demand and supply parameters. The results of clustering are represented on a GIS map for the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Outlier detection in high dimensional categorical data has been a problem of much interest due to the extensive use of qualitative features for describing the data across various application areas. Though there exist various established methods for dealing with the dimensionality aspect through feature selection on numerical data, the categorical domain is actively being explored. As outlier detection is generally considered as an unsupervised learning problem due to lack of knowledge about the nature of various types of outliers, the related feature selection task also needs to be handled in a similar manner. This motivates the need to develop an unsupervised feature selection algorithm for efficient detection of outliers in categorical data. Addressing this aspect, we propose a novel feature selection algorithm based on the mutual information measure and the entropy computation. The redundancy among the features is characterized using the mutual information measure for identifying a suitable feature subset with less redundancy. The performance of the proposed algorithm in comparison with the information gain based feature selection shows its effectiveness for outlier detection. The efficacy of the proposed algorithm is demonstrated on various high-dimensional benchmark data sets employing two existing outlier detection methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.