130 resultados para Infectious Bronchitis Virus (IBV)

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe here the characterization of the gene gp64 encoding the envelope fusion protein GP64 (open reading frame) ORF 105 from Bombyx mori nucleopolyhedrovirus (BmNPV). gp64 was transcribed from the early to late stages of infection and the transcripts were seen from 6 to 72 h post infection (hpi). The early transcripts initiated from a consensus CAGT motif while the late transcripts arose from three conserved TAAG motifs, all of which were located in the near upstream region of the coding sequence. Both early and late transcripts terminated at a run of T residues following the second polyadenylation signal located 31 nt downstream of the translation termination codon. BmGP64 protein was detectable from 6 hpi and was present in larger quantities throughout the infection process from 12 hpi, in BmNPV-infected BmN cells. The persistent presence of GP64 in BmN cells differed from the protein expression pattern of GP64 in Autographa californica multinucleocapsid nucleopolyhedrovirus infection, where the protein levels decreased significantly by late times (48 hpi). BmGP64 was located in the membrane and cytoplasm of the infected host cells and as a component of the budded virions. The production of infectious budded virus and the fusion activity were reduced when glycosylation of GP64 was inhibited. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES. sh-SLIV showed significant inhibition of viral RNA replication in a human hepatocellular carcinoma (Huh7) cell line harbouring a HCV monocistronic replicon. More importantly, co-transfection of infectious HCV-H77s RNA and sh-SLIV in Huh7.5 cells successfully demonstrated a significant decrease in viral RNA in HCV cell culture. Additionally, we report, for the first time, the targeted delivery of sh-SLIV RNA into mice liver using Sendai virosomes and demonstrate selective inhibition of HCV-IRES-mediated translation. Results provide the proof of concept that Sendai virosomes could be used for the efficient delivery of shRNAs into liver tissue to block HCV replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

5-Fluorouracil (5FU), an analogue of uracil, was found to inhibit the production of infectious particles of rinderpest virus (RPV) in Vero cells (African green monkey kidney cells) by 99%, at a concentration of 1 μg/ml. The levels of individual mRNA specific for five of the virus genes were also reduced drastically, while the level of mRNA for a cellular housekeeping gene—glyceraldehyde-3-phosphate dehydrogenase (GAPDH)—was unaltered by fluorouracil treatment of infected cells. Both virus RNA and protein synthesis showed inhibition in a dose-dependent manner. The virions which budded out of 5-fluorouracil-treated cells also contained reduced amounts of virus proteins compared with virus particles from untreated cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifteen stable mouse spleen cell myeloma hybrids (hybridomas) producing monoclonal antibodies to rinderpest virus proteins were produced. The specificity of these monoclonal antibodies was established by radioimmunoprecipitation followed by polyacrylamide gel analysis and immunofluorescence. Nine antibodies were specific for the surface glycoprotein H. All the nine clones showed inhibition of haemagglutination by measles virus. The antibodies from two clones (A7D2 and B2F6) neutralise infectious virus. Six clones produce antibodies reacting with the nucleocapsid protein N. Three antigenic sites designated I–III, with sites I and II partially overlapping, were topographically mapped on the H molecule by competitive binding assay. Similarly, two antigenic sites I and II were delineated on the N protein. The monoclonal antibodies were used to study the antigenic relationships of H and N proteins of rinderpest virus, measles virus and canine distemper virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several H-2 defined cell lines were examined for their ability to support infection and replication of Japanese encephalitis virus (JEV) before their use in in vitro and in vivo stimulation protocols for generating cytotoxic T lymphocytes (CTLs) against JEV. Among II different cell lines tested, two H-2(d) macrophage tumour lines (P388D1, RAW 264.7), an H-2(d) hybridoma (Sp2/0), an H-2K(k)D(d) neuroblastoma (Neuro 2a), and H-2(k) fibroblast cell line (L929) were found to support JEV infection and replication. These cell lines were used to generate anti-JEV CTLs by using in vivo immunization followed by in vitro stimulation of BALB/c mice. We observed that not only syngeneic and allogeneic infected cells but also JEV-infected xenogeneic cells could prime BALB/c mice for the generation of JEV-specific CTLs upon subsequent in vitro stimulation of splenocytes with JEV-infected syngeneic cells. Although infected xenogeneic cells were used for immunization, the anti-JEV effecters that were generated lysed infected syngeneic targets but not JEV-infected xenogeneic or allogeneic target cells in a 5h Cr-51 release assay. These anti-JEV effecters recognized syngeneic target cells infected with West Nile virus to a lesser extent and were shown to be Lyt-2.2(+) T cells. The results of unlabelled cold target competition studies suggested alterations in the cell surface expression of viral antigenic determinants recognized by these CTLs. We further demonstrate that the JEV-specific CTLs generated could virtually block the release of infectious virus particles from infected P388D1 and Neuro 2a cells in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virus epizootics which occurred in seals in both Europe and Siberia during 1987/1988 were caused by two different morbillivirus, referred to as phocid distemper virus (PDV) 1 and 2, respectively. Molecular and serological studies have shown that the European virus is quite distinct from canine distemper virus (CDV), its closest relative in the morbillivirus group. Analysis of tissues obtained from infected seals from a wide geographical distrubution over Northern Europe showed that the infectious agent (PDV 1) was identical in all cases. Nucleotide sequence analysis of one of the virus genes suggested that this virus has evolved away from CDV over a long time period and is most probably an enzootic virus of marine mammals. In contrast, the virus (PDV 2) which caused the deaths of many Siberian seals was indistinguishable, both serologically and at the molecular level, from CDV and must have originated from a land source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regular vaccinations with potent vaccine, in endemic countries and vaccination to live in non-endemic countries are the methods available to control foot-and-mouth disease. Selection of candidate vaccine strain is not only cumbersome but the candidate should grow well for high potency vaccine preparation. Alternative strategy is to generate an infectious cDNA of a cell culture-adapted virus and use the replicon for development of tailor-made vaccines. We produced a chimeric `O' virus in the backbone of Asia 1 and studied its characteristics. The chimeric virus showed high infectivity titre (>10(10)) in BHK 21 cell lines, revealed small plague morphology and there was no cross reactivity with antiserum against Asia I. The virus multiplies rapidly and reaches peak at 12 h post infection. The vaccine prepared with this virus elicited high antibody titres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent infection of hepatitis C virus (HCV) can lead to liver cirrhosis and hepatocellular carcinoma, which are currently diagnosed by invasive liver biopsy. Approximately 15-20% of cases of chronic liver diseases in India are caused by HCV infection. In North India, genotype 3 is predominant, whereas genotype 1 is predominant in southern parts of India. The aim of this study was to identify differentially regulated serum proteins in HCV-infected Indian patients (genotypes 1 and 3) using a two-dimensional electrophoresis approach. We identified eight differentially expressed proteins by MS. Expression levels of one of the highly upregulated proteins, retinol-binding protein 4 (RBP4), was validated by ELISA and Western blotting in two independent cohorts. We also confirmed our observation in the JFH1 infectious cell culture system. Interestingly, the HCV core protein enhanced RBP4 levels and partial knockdown of RBP4 had a positive impact on HCV replication, suggesting a possible role for this cellular protein in regulating HCV infection. Analysis of RBP4-interacting partners using a bioinformatic approach revealed novel insights into the possible involvement of RBP4 in HCV-induced pathogenesis. Taken together, this study provided information on the proteome profile of the HCV-infected Indian population, and revealed a link between HCV infection, RBP4 and insulin resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In China, the recent outbreak of novel influenza A/H7N9 virus has been assumed to be severe, and it may possibly turn brutal in the near future. In order to develop highly protective vaccines and drugs for the A/H7N9 virus, it is critical to find out the selection pressure of each amino acid site. In the present study, six different statistical methods consisting of four independent codon-based maximum likelihood (CML) methods, one hierarchical Bayesian (HB) method and one branch-site (BS) method, were employed to determine if each amino acid site of A/H7N9 virus is under natural selection pressure. Functions for both positively and negatively selected sites were inferred by annotating these sites with experimentally verified amino acid sites. Comprehensively, the single amino acid site 627 of PB2 protein was inferred as positively selected and it function was identified as a T-cell epitope (TCE). Among the 26 negatively selected amino acid sites of PB2, PB1, PA, HA, NP, NA, M1 and NS2 proteins, only 16 amino acid sites were identified to be involved in TCEs. In addition, 7 amino acid sites including, 608 and 609 of PA, 480 of NP, and 24, 25, 109 and 205 of M1, were identified to be involved in both B-cell epitopes (BCEs) and TCEs. Conversely, the function of positions 62 of PA, and, 43 and 113 of HA was unknown. In conclusion, the seven amino acid sites engaged in both BCEs and TCEs were identified as highly suitable targets, as these sites will be predicted to play a principal role in inducing strong humoral and cellular immune responses against A/H7N9 virus. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several late gene expression factors (Lefs) have been implicated in fostering high levels of transcription from the very late gene promoters of polyhedrin and p10 from baculoviruses. We cloned and characterized from Bombyx mori nuclear polyhedrosis virus a late gene expression factor (Bmlef2) that encodes a 209-amino-acid protein harboring a Cys-rich C-terminal domain. The temporal transcription profiles of lef2 revealed a 1.2-kb transcript in both delayed early and late periods after virus infection. Transcription start site mapping identified the presence of an aphidicolin-sensitive late transcript arising from a TAAG motif located at -352 nucleotides and an aphidicolin-insensitive early transcript originating from a TTGT motif located 35 nucleotides downstream to a TATA box at -312 nucleotides, with respect to the +1 ATG of lef2. BmLef2 trans-activated very late gene expression from both polyhedrin and p10 promoters in transient expression assays. Internal deletion of the Cys-rich domain from the C-terminal region abolished the transcriptional activation. Inactivation of Lef2 synthesis by antisense lef2 transcripts drastically reduced the very late gene transcription but showed little effect on the expression from immediate early promoter. Decrease in viral DNA synthesis and a reduction in virus titer were observed only when antisense lef2 was expressed under the immediate early (ie-1) promoter. Furthermore, the antisense experiments suggested that lef2 plays a direct role in very late gene transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hemagglutinin (H) protein of Rinderpest virus expressed by a recombinant buculovirus used as a vaccine produced high titres of neutralizing antibody to Rinderpest virus in the vaccinated cattle, comparable to the levels produced by live attenuated vaccine. The immunized cattle were protected against a vaccine-virus challenge, as demonstrated by the failure of development of antibodies to N protein of the vaccine virus. The lack of replication of vaccine virus in the immunized cattle indicated that they are capable of showing a protective response if challenged with a virulent virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haemagglutinin (HA) and fusion (F) proteins of peste-des-petits-ruminants virus (PPRV) and rinderpest virus (RPV) were purified by immunoaffinity chromatography. The purified proteins were characterized by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Rabbit hyperimmune sera were raised against the purified HA and F proteins and assayed by enzyme-linked immunosorbent assay (ELISA), haemagglutination-inhibition (HAI) and virus neutralization (VN) tests. The immunized animals were challenged with a virulent lapinized (rabbit-adapted) strain of RPV: Both HA and F proteins of PPRV protected rabbits against a lethal challenge with lapinized RPV. As expected, RPV HA and F proteins also conferred a similar protection against the homologous challenge. The postchallenge antibody responses were of a true anamnestic type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.