26 resultados para Infant, Low Birth Weight
em Indian Institute of Science - Bangalore - Índia
Resumo:
Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of Percoll purified Leydig cell proteins from 20- and 120-day-old rats revealed a significant decrease in a low molecular weight peptide in the adult rats. Administration of human chorionic gonadotropin to immature rats resulted in a decrease in the low molecular weight peptide along with increase in testosterone production. Modulation of the peptide by human chorionic gonadotropin could be confirmed by Western blotting. The presence of a similar peptide could be detected by Western blotting in testes of immature mouse, hamster, guinea pig but not in adrenal, placenta and corpus luteum. Administration of testosterone propionate which is known to inhibit the pituitary luteinizing hormone levels in adult rats resulted in an increase in the low molecular weight peptide, as checked by Western blotting. It is suggested that this peptide may have a role in regulation of acquisition of responsiveness to luteinizing hormone by immature rat Leydig cells.
Resumo:
The blending of perfluorinated bile ester derivatives with the gelator 2,3-didecyloxyanthracene (DDOA) yields a new class of hybrid organo- and aerogels displaying a combination of optical and mechanical properties that differ from those of pure gels. Indeed, the nanofibers constituting the hybrid organogels emit polarized blue light and display dichroic near-UV absorption via the achiral DDOA molecules, thanks to their association with a chiral bile ester. Moreover, the thermal stability and the mechanical yield stress of the mixed organogels in DMSO are enhanced for blends of DDOA with the deoxycholic gelator (DC11) having a C-11 chain, as compared to the pure components' gels. When the chain length of the ester is increased to C-13 (DC13) a novel compound for aerogel formation directly in scCO(2) is obtained under the studied conditions. A mixture of this compound with DDOA is also able to gelate scCO(2) leading to novel composite aerogel materials. As revealed by SAXS measurements, the hybrid and the pure DDOA and DC13 aerogels display cell parameters that are very similar. These SAXS experiments suggest that crystallographic conditions are very favorable for the growth of hybrid molecular arrangements in which DDOA and DC13 units could be interchanged. Specific molecular interactions between two components are not always a pre-requisite condition for the formation of a hybrid nanostructured material in which the components mutually induce properties.
Resumo:
Herein, we present six new lipopolymers based on low molecular weight, branched polyethylenimine (BPEI 800 Da) which are hydrophobically modified using ferrocene terminated alkyl tails of variable lengths. The effects of degree of grafting, spacer length and the redox state of ferrocene in the lipopolymers on the self assembly properties were investigated in detail by TEM, AFM, DLS and zeta potential measurements. The assemblies displayed an oxidation induced increase in the size of the aggregates. The co-liposomes comprising the lipopolymer and a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), showed excellent gene (pDNA) delivery capability in a serum containing environment in two cancer cell lines (HeLa and U251 cells). Optimized formulations showed remarkably higher transfection activity than BPEI (25 kDa) and were also significantly better than a commercial transfection reagent, Lipofectamine 2000 as evidenced from both the luciferase activity and GFP expression analysis. Oxidation of ferrocene in the lipopolymers led to drastically reduced levels of gene transfection which was substantiated by reduced cellular internalization of fluorescently labelled pDNA as detected using confocal microscopy and flow cytometry. Moreover, the transfection inactive oxidized lipopolyplexes could be turned transfection active by exposure to ascorbic acid (AA) in cell culture medium during transfection. Endocytosis inhibition experiments showed that gene expression mediated by reduced formulations involved both clathrin and caveolae mediated pathways while the oxidized formulations were routed via the caveolae. Cytotoxicity assays revealed no obvious toxicity for the lipopolyplexes in the range of optimized transfection levels in both the cell lines studied. Overall, we have exploited the redox activity of ferrocene in branched PEI-based efficient polymeric gene carriers whose differential transfection activities could be harnessed for spatial or temporal cellular transfections.
Resumo:
This paper reports a new class of photo-cross-linkable side chain liquid crystalline polymers (PSCLCPs) based on the bis(benzylidene)cyclohexanone unit, which functions as both a mesogen and a photoactive center. Polymers with the bis(benzylidene)cyclohexanone unit and varying spacer length have been synthesized. Copolymers of bis(benzylidene)cyclohexanone containing monomer and cholesterol benzoate containing monomer with different compositions have also been prepared. All these polymers have been structurally characterized by spectroscopic techniques. Thermal transitions were studied by DSC, and mesophases were identified by polarized light optical microscopy (POM). The intermediate compounds OH-x, the monomers SCLCM-x, and the corresponding polymers PSCLCP-x, which are essentially based on bis(benzylidene)cyclohexanone, all show a nematic mesophase. Transition temperatures were observed to decrease with increasing spacer length. The copolymers with varying compositions exhibit a cholesteric mesophase, and the transition temperatures increase with the cholesteric benzoate units in the copolymer. Photolysis of the low molecular weight liquid crystalline bis(benzylidene)-cyclohexanone compound reveals that there are two kinds of photoreactions in these systems: the EZ photoisomerization and 2 pi + 2 pi addition. The EZ photoisomerization in the LC phase disrupts the parallel stacking of the mesogens, resulting in the transition from the LC phase to the isotropic phase. The photoreaction involving the 2 pi + 2 pi addition of the bis(benzylidene)cyclohexanone units in the polymer results in the cross-linking of the chains. The liquid crystalline induced circular dichroism (LCICD) studies of the cholesterol benzoate copolymers revealed that the cholesteric supramolecular order remains even after the photo-cross-linking.
Resumo:
This is the first report on studies carried out in detail on high-pressure oxygen copolymerization (> 50 psi) of the vinyl monomers styrene and alpha-methylstyrene (AMS). The saturation pressure of oxygen for AMS oxidation, hitherto obscure, is found to be 300 psi. Whereas the ease of oxidation is more favorable for styrene, the rate and yield of polyperoxide formation are higher for AMS. This is explained on the basis of the reactivity of the corresponding alkyl and peroxy radicals. Below 50 degrees C, degradation of the poly(styrene peroxide) formed is about 2.5 times less than that observed above 50 degrees C, so much so that it gives a break in the rate curve, and thereafter the rate is lowered. Normal free radical kinetics is followed before the break point, after which the monomer and initiator exponents become unusually high. This is interpreted on the basis of chain transfer to the degradation products. The low molecular weight of polyperoxides has been attributed to the (i) low reactivity of RO(2)(.) toward the monomer, (ii) chain transfer to degradation products, (iii) facile cleavage of O-O bond, followed by unzipping to nonradical products, and (iv) higher stability of the reinitiating radicals. At lower temperatures, (i) predominates, whereas at higher temperatures, chiefly (ii)-(iv) are the case.
Resumo:
One of the major problems faced by coal based thermal power stations is handling and disposal of ash. Among the various uses of fly ash, the major quantity of ash produced is used in geotechnical engineering applications such as construction of embankments, as a backfill material, etc. The generally low specific gravity of fly ash resulting in low unit weight as compared to soils is an attractive property for its use in geotechnical applications. In general, specific gravity of coal ash lies around 2.0 but can vary to a large extent (1.6 to 3.1). The variation of specific gravity of coal ash is due to the combination of various factors like gradation, particle shape, and chemical composition. Since specific gravity is an important physical property, it has been studied in depth for three Indian coal ashes and reported in this paper.
Resumo:
This is the first comprehensive report on the calculation of segment size, which signifies the asic unit of flow in long chain plasticizing liquids, by a novel multi-pronged approach. Unlike,low molecular weight liquids and high polymer melts these complex long chain liquids encompasses the least understood domain of the liquid state. In the present work the flow behaviour of carboxylate ester (300-900 Da) has been explained through segmental motion taking into account the independence of molecular weight region. The segment size have been calculated by various methods based on satistical thermodynamics, molecular dynamics and group additivity nd their merits analysed.
Resumo:
Regenerable 'gel-coated' cationic resins with fast sorption kinetics and high sorption capacity have application potential for removal of trace metal ions even in large-scale operations. Poly(acrylic acid) has been gel-coated on high-surface area silica (pre-coated with ethylene-vinyl acetate copolymer providing a thin barrier layer) and insolubilized by crosslinking with a low-molecular-weight diepoxide (epoxy equivalent 180 g) in the presence of benzyl dimethylamine catalyst at 70 degrees C, In experiments performed for Ca2+ sorption from dilute aqueous solutions of Ca(NO,),, the gel-coated acrylic resin is found to have nearly 40% higher sorption capacity than the bead-form commercial methacrylic resin Amberlite IRC-50 and also several limes higher rate of sorption. The sorption on the gel-coated sorbent under vigorous agitation has the characteristics of particle diffusion control with homogeneous (gel) diffusion in resin phase. A new mathematical model is proposed for such sorption on gel-coated ion-exchange resin in finite bath and solved by applying operator-theoretic methods. The analytical solution so obtained shows goad agreement with experimental sorption kinetics at relatively low levels (< 70%) of resin conversion.
Resumo:
It has been observed that poly(styrene peroxide) with a high molecular weight is thermally less stable than the same polymer with a low molecular weight. This has been explained as being due to the strain on the O-O bond due to the greater polymer chain length.
Resumo:
Multistress aging of outdoor composite polymeric insulators continues to be a topic of interest for power transmission research community. Aging due to dry conditions alone at elevated temperatures and electric stress in the presence of UV radiation environment probably has not been explored. This paper deals with long-term accelerated multistress aging under the above conditions on full-scale 11 kV distribution class composite silicone rubber insulators. To evaluate the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they were subjected to accelerated aging in a specially designed multistress-aging chamber for 12000 hours. Chemical, physical and electrical changes due to degradation have been assessed using various techniques. It has been found that the content of low molecular weight molecules and hydrophobicity reduced significantly. Also, due to oxidation and aging there is appreciable increase in surface roughness and weight percentage of oxygen. Study is under progress and only intermediate results are presented in this paper.
Resumo:
Diluents (either low molecular weight compounds orother polymers) are known to modify the morphology, the rates of nucleation and growth of polymers 1- 4. Recentlybinary systems in which both the components crystallize simultaneously to give a eutectic solid have been studied with great interest. Carbonnei et al.
Resumo:
Polymeric outdoor insulators are being increasingly used for electrical power transmission and distribution in the recent years. One of the current topics of interest for the power transmission community is the aging of such outdoor polymeric insulators. A few research groups are carrying out aging studies at room temperature with wet period as an integral part of multistress aging cycle as specified by IEC standards. However, aging effect due to dry conditions alone at elevated temperatures and electric stress in the presence of radiation environment has probably not been explored. It is interesting to study and understand the insulator performance under dry conditions where wet periods are either rare or absent and to estimate the extent of aging caused by multiple stresses. This paper deals with the long-term accelerated multistress aging on full-scale 11 kV distribution class composite silicone rubber insulators. In order to assess the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they are subjected to accelerated aging in a specially designed multistress-aging chamber for 3800 hours. All the stresses are applied at an accelerated level. Using a data acquisition system developed for the work, leakage current has been monitored in LabVIEW environment. Chemical changes due to degradations have been studied using Energy Dispersive X-Ray analysis, Scanning Electron Microscope and Fourier transform Infrared Spectroscopy. Periodically different parameters like low molecular weight (LMW) molecular content, hydrophobicity, leakage current and surface morphology were monitored. The aging study is under progress and only intermediate results are presented in this paper.
Solution structure of O-glycosylated C-terminal leucine zipper domain of human salivary mucin (MUC7)
Resumo:
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.
Resumo:
This article describes successful incorporation of multiwalled boron nitride nanotubes (BNNTs) and various functionalized BNNTs by Lewis bases such as trioctylamine (TOA), tributylamine (TBA), and triphenylphosphine (TPP), etc., in organogels formed by triphenylenevinylene (TPV)-based low molecular weight gelator (LMWG) in toluene and consequent characterization of the resulting gel nanocomposites. Functionalized BNNTs were synthesized first,and the presence of tubular structures with high aspect ratio and increased diameter compared to the starting BNNTs was confirmed by SEM. TEM, and Raman spectroscopy. The micrographs of composites of I and BNNTs showed evidence of wrapping of the gelator molecules on to the BNNT surface presumably brought about by pi-pi stacking and van der Waals interactions, This leads to the formation of densely packed and directionally aligned fibrous networks. Such ``reinforced'' aggregation of the gelator molecules in presence of doped BNNTs led to an increase in the sot-to-gel transition temperature and the solidification temperature of the gel nanocomposites as revealed from differential scanning calorimetry. Rheological investigations of the gel nanocomposites indicate that the flow properties of the resulting materials become resistant to applied stress upon incorporation of even a very low wt % of BNNTs. Finally, the increase in thermal conductivity of the nanocomposite compared to the gelator alone was observed for the temperature range of 0-60 degrees C which may make these composites potentially useful in various applications depending on the choice and the amount of BNNT loading in the composite.
Resumo:
The thermal decomposition of three commercial samples of carboxy-terminated polybutadiene (PBCT) resins was studied by thermogravimetric analysis (TGA) at heating rates varying from 2° to 100°C/min. Kinetic parameters of the decomposition process at different heating rates were evaluated by means of the Fuoss method.1 The decomposition process and the activation energy values are found to be dependent on heating rate. Mass-spectrometric analysis of the decomposition products shows that the pyrolysis products of PBCT resins are mainly low molecular weight hydrocarbons: ethylene, acetylene, butadiene, propadiene, vinylcyclohexene, etc. The rates of evolution of these hydrocarbon products vary with the carboxy content of the PBCT resin. Based on this, a carbonium ion mechanism has been suggested for the thermal decomposition. The data generated from this work are of importance for a consideration of the mechanism of combustion of composite solid propellants based on PBCT binders.