28 resultados para Industrial Technology and Design, SOSE
em Indian Institute of Science - Bangalore - Índia
Resumo:
Development of a new class of single pan high efficiency, low emission stoves, named gasifier stoves, that promise constant power that can be controlled using any solid biomass fuel in the form of pellets is reported here. These stoves use battery-run fan-based air supply for gasification (primary air) and for combustion (secondary air).Design with the correct secondary air flow ensures near-stoichiometric combustion that allows attainment of peak combustion temperatures with accompanying high water boiling efficiencies (up to 50% for vessels of practical relevance) and very low emissions (of carbon monoxide, particulate matter and oxides of nitrogen). The use of high density agro-residue based pellets or coconut shell pieces ensures operational duration of about an hour or more at power levels of 3 kWth (similar to 12 g/min). The principles involved and the optimization aspects of the design are outlined. The dependence of efficiency and emissions on the design parameters are described. The field imperatives that drive the choice of the rechargeable battery source and the fan are brought out. The implications of developments of Oorja-Plus and OorjaSuper stoves to the domestic cooking scenario of India are briefly discussed. The process development, testing and internal qualification tasks were undertaken by Indian Institute of Science. Product development and the fuel pellet production were dealt with by First Energy Private Ltd.Close interaction at several times during this period has helped progress the project from the laboratory to large scale commercial operation. At this time, over four hundred thousand stoves and 30 kilotonnes fuel have been sold in four states in India.
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is transported to the kitchen. The thermal energy source is used to supplement the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. Solar energy is transferred to the kitchen by means of a circulating fluid. Energy collected from sun is maximized by changing the flow rate dynamically. This paper proposes a concept of maximum power point tracking (MPPT) for the solar thermal collector. The diameter of the pipe is selected to optimize the overall energy transfer. Design and sizing of different components of the system are explained. Concept of MPPT is validated with simulation and experimental results. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid. The transfer of solar heat is a twofold process wherein the energy from the collector is transferred first to an intermediate energy storage buffer and the energy is subsequently transferred from the buffer to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz, the fluid flow rate from collector to buffer, fluid flow rate from buffer to load and the diameter of the pipes. This is a complex multi energy domain system comprising energy flow across several domains such as thermal, electrical and hydraulic. The entire system is modeled using the bond graph approach with seamless integration of the power flow in these domains. A method to estimate different parameters of the practical cooking system is also explained. Design and life cycle costing of the system is also discussed. The modeled system is simulated and the results are validated experimentally. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Grid-connected inverters require a third-order LCL filter to meet standards such as the IEEE Std. 519-1992 while being compact and cost-effective. LCL filter introduces resonance, which needs to be damped through active or passive methods. Passive damping schemes have less control complexity and are more reliable. This study explores the split-capacitor resistive-inductive (SC-RL) passive damping scheme. The SC-RL damped LCL filter is modelled using state space approach. Using this model, the power loss and damping are analysed. Based on the analysis, the SC-RL scheme is shown to have lower losses than other simpler passive damping methods. This makes the SC-RL scheme suitable for high power applications. A method for component selection that minimises the power loss in the damping resistors while keeping the system well damped is proposed. The design selection takes into account the influence of switching frequency, resonance frequency and the choice of inductance and capacitance values of the filter on the damping component selection. The use of normalised parameters makes it suitable for a wide range of design applications. Analytical results show the losses and quality factor to be in the range of 0.05-0.1% and 2.0-2.5, respectively, which are validated experimentally.
Resumo:
Key aspects of Organic Photovoltaics (OPVs) have been reviewed in this tutorial. Issues pertaining to the choice of materials, fabrication processes, photophysical mechanisms, device characterization, morphology of active layers and manufacturing are discussed. Special emphasis has been given to recent developments in large-area modules. Current strategies in enhancing the performance using external optical engineering approaches have also been highlighted. OPVs as a technology combine low weight, flexibility, low cost, good form factor and high-throughput processing; making them a promising PV technology for the future.
Resumo:
Theoretical and experimental investigations on the near field and radiation characteristics show a fairly good agreement which justifies the TE(11)(x) mode of excitation. Eight polyrod antennas of different configurations were built and tested as functions of taper angles, straight and curved axial lengths, and frequency of excitation. It is found that the radiation patterns. cross-polarization level, beamwidth and gain could be controlled not only by the axial length and taper angles but also by shaping the axis of the polyrods in order to realize an optimum design
Resumo:
The critical stream power criterion may be used to describe the incipient motion of cohesionless particles of plane sediment beds. The governing equation relating ``critical stream power'' to ``shear Reynolds number'' is developed by using the present experimental data as well as the data from several other sources. Simultaneously, a resistance equation, relating the ``particle Reynolds number'' to the``shear Reynolds number'' is developed for plane sediment beds in wide channels with little or no transport. By making use of these relations, a procedure is developed to design plane sediment beds such that any two of the four design variables, including particle size, energy/friction slope, flow depth, and discharge per unit width in the channel should be known to predict the remaining two variables. Finally, a straightforward design procedure using design tables/design curves and analytical methods is presented to solve six possible design problems.
Resumo:
This paper is about a software system, GRASS-Graphic Software System for 2-D drawing and design—which has been implemented on a PDP-11/35 system with RSX-11M operating system. It is a low cost interactive graphics system for the design of two dimensional drawings and uses a minimum of hardware. It provides comprehensive facilities for creating, editing, storing and retrieving pictures. It has been implemented in the language Pascal and has the potential to be used as a powerful data-imputting tool for a design-automation system. The important features of the system are its low cost, software character generation and a user-trainable character recognizer, which has been included.
Resumo:
Four types of microstrip coupled line DC blocks are analysed and expressions for the theoretically possible maximum bandwidth for a given ripple are derived. A procedure for designing a DC block to meet a given set of ripple and bandwidth specifications is indicated.
Resumo:
Design of an Ultra Wide Band (UWB) filter over 3.1 GHz to 10.6 GHz using broad side coupled and spur lines in microstrip medium suitable for UWB communications has been presented in this paper. Parameters of broad side coupled lines have been appropriately chosen to achieve ultra wide band response. Spur lines have been incorporated at the input and output feed lines of the filter to improve the stop band rejection characteristics of the filter. Filter has been analyzed based on circuit models and full wave simulations. Experimental results of the filter designed using the proposed structure has been verified against the results obtained from circuit models and full wave simulations. The results match satisfactorily. Stop band rejection of better than 20 dB was obtained over the frequencies of 13 GHz to 18.2 GHz. Overall size of the filter is 40 x 18 x 0.787 mm(3).
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
To understand structural and thermodynamic features of disulfides within an alpha-helix, a non-redundant dataset comprising of 5025 polypeptide chains containing 2311 disulfides was examined. Thirty-five examples were found of intrahelical disulfides involving a CXXC motif between the N-Cap and third helical positions. GLY and PRO were the most common amino acids at positions 1 and 2, respectively. The N-Cap residue for disulfide bonded CXXC motifs had average values of (-112 +/- 25.2 degrees, 106 +/- 25.4 degrees). To further explore conformational requirements for intrahelical disulfides, CYS pairs were introduced at positions N-Cap-3; 1,4; 7,10 in two helices of an Escherichia coli thioredoxin mutant lacking its active site disulfide (nSS Trx). In both helices, disulfides formed spontaneously during purification only at positions N-Cap-3. Mutant stabilities were characterized by chemical denaturation studies (in both oxidized and reduced states) and differential scanning calorimetry (oxidized state only). All oxidized as well as reduced mutants were destabilized relative to nSS Trx. All mutants were redox active, but showed decreased activity relative to wild-type thioredoxin. Such engineered disulfides can be used to probe helix start sites in proteins of unknown structure and to introduce redox activity into proteins. Conversely, a protein with CYS residues at positions N-Cap and 3 of an alpha-helix is likely to have redox activity.
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.