7 resultados para Indians, North American

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical research available on technology transfer initiatives is either North American or European. Literature over the last two decades shows various research objectives such as identifying the variables to be measured and statistical methods to be used in the context of studying university based technology transfer initiatives. AUTM survey data from years 1996 to 2008 provides insightful patterns about the North American technology transfer initiatives, we use this data in our paper. This paper has three sections namely, a comparison of North American Universities with (n=1129) and without Medical Schools (n=786), an analysis of the top 75th percentile of these samples and a DEA analysis of these samples. We use 20 variables. Researchers have attempted to classify university based technology transfer initiative variables into multi-stages, namely, disclosures, patents and license agreements. Using the same approach, however with minor variations, three stages are defined in this paper. The first stage is to do with inputs from R&D expenditure and outputs namely, invention disclosures. The second stage is to do with invention disclosures being the input and patents issued being the output. The third stage is to do with patents issued as an input and technology transfers as outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forces that cause deformation of western North America have been debated for decades. Recent studies, primarily based on analysis of crustal stresses in the western United States, have suggested that the deformation of the region is mainly controlled by gravitational potential energy (GPE) variations and boundary loads, with basal tractions due to mantle flow playing a relatively minor role. We address these issues by modelling the deviatoric stress field over western North America from a 3-D finite element mantle circulation model with lateral viscosity variations. Our approach takes into account the contribution from both topography and shallow lithosphere structure (GPE) as well as that from deeper mantle flow in one single model, as opposed to separate lithosphere and circulation models, as has been done so far. In addition to predicting the deviatoric stresses we also jointly fit the constraints of geoid, dynamic topography and plate motion both globally and over North America, in order to ensure that the forces that arise in our models are dynamically consistent. We examine the sensitivity of the dynamic models to different lateral viscosity variations. We find that circulation models that include upper mantle slabs yield a better fit to observed plate velocities. Our results indicate that a model of GPE variations coupled with mantle convection gives the best fit to the observational constraints. We argue that although GPE variations control a large part of the deformation of the western United States, deeper mantle tractions also play a significant role. The average deviatoric stress magnitudes in the western United States range 30-40 MPa. The cratonic region exhibits higher coupling to mantle flow than the rest of the continent. We find that a relatively strong San Andreas fault gives a better fit to the observational constraints, especially that of plate velocity in western North America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Resilience-based approaches are increasingly being called upon to inform ecosystem management, particularly in arid and semi-arid regions. This requires management frameworks that can assess ecosystem dynamics, both within and between alternative states, at relevant time scales. 2. We analysed long-term vegetation records from two representative sites in the North American sagebrush-steppe ecosystem, spanning nine decades, to determine if empirical patterns were consistent with resilience theory, and to determine if cheatgrass Bromus tectorum invasion led to thresholds as currently envisioned by expert-based state-and-transition models (STM). These data span the entire history of cheatgrass invasion at these sites and provide a unique opportunity to assess the impacts of biotic invasion on ecosystem resilience. 3. We used univariate and multivariate statistical tools to identify unique plant communities and document the magnitude, frequency and directionality of community transitions through time. Community transitions were characterized by 37-47% dissimilarity in species composition, they were not evenly distributed through time, their frequency was not correlated with precipitation, and they could not be readily attributed to fire or grazing. Instead, at both sites, the majority of community transitions occurred within an 8-10year period of increasing cheatgrass density, became infrequent after cheatgrass density peaked, and thereafter transition frequency declined. 4. Greater cheatgrass density, replacement of native species and indication of asymmetry in community transitions suggest that thresholds may have been exceeded in response to cheatgrass invasion at one site (more arid), but not at the other site (less arid). Asymmetry in the direction of community transitions also identified communities that were at-risk' of cheatgrass invasion, as well as potential restoration pathways for recovery of pre-invasion states. 5. Synthesis and applications. These results illustrate the complexities associated with threshold identification, and indicate that criteria describing the frequency, magnitude, directionality and temporal scale of community transitions may provide greater insight into resilience theory and its application for ecosystem management. These criteria are likely to vary across biogeographic regions that are susceptible to cheatgrass invasion, and necessitate more in-depth assessments of thresholds and alternative states, than currently available.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MUCH information has been gathered in recent years on the so-called 'antifreeze' proteins which lower the freezing point of the serum of certain marine fishes living in sub-zero water temperatures1−4. The proteins from the Antarctic fish Trematomus borchgrevinki are glycoproteins with a repeating alanyl-alanyl-threonyl tripeptide sequence, the threonyl residue being linked to a disaccharide1,2. In contrast, the antifreeze protein from the winter flounder Pseudopleuronectus americanus in the North American Atlantic coastal region is made up of eight ammo acids with no apparent repeating sequence of the residues and no sugar moiety (ref. 4 and unpublished work of C. L. Hew, C. C. Yip & G. Fletcher). The antifreeze activity of these proteins is not compatible with the known colligative properties of solutes in solution and the mechanism of their action is not yet fully understood. But a common feature of both types of the antifreeze proteins is the preponderance of alanine which accounts for over 60% of the total amino residues. This fact, together with the absence of the carbohydrate in the protein from the winter flounder, prompted us to attempt the synthesis of polypeptide analogues having comparable proportions of alanine in them along with suitable other amino acids. As a first step, we made use of the lack of any obvious periodicity in the distribution of the alanyl residues in the flounder's protein and attempted the synthesis of a random copolypeptide containing about 65 mol % of alanine and 35 mol % of aspartic acid. The choice of aspartic acid was made on the basis of its being the next major amino acid in the flounder's protein3,4 and on the expectation that its polar character will help the water-solubility of the alanine-rich copolypeptide, as in other studies on alanine-containing random copolymers. In addition, Duman and DeVries4 have earlier indicated the involvement of carboxyl groups on the antifreeze activity by chemical modification studies. We report here the synthesis of this polypeptide and show that it possesses antifreeze activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work demonstrates the feasibility of mesoscale (100 μm to mm) punching of multiple holes of intricate shapes in metals. Analytical modeling, finite element (FE)simulation, and experimentations are used in this work. Two dimensional FE simulations in ABAQUS were done with an assumed material modeling and plane-strain condition. A known analytical model was used and compared with the ABAQUS simulation results to understand the effects of clearance between the punch and the die. FE simulation in ABAQUS was done for different clearances and corner radii at punch, die, and holder. A set of punches and dies were used to punch out a miniature spring-steel gripper. Comparison of compliant grippers manufactured by wire-cut electro discharge machining(EDM) and punching shows that realizing sharp interior and re-entrant corners by punching is not easy to achieve. Punching of circular holes with 5 mm and 2.5 mm diameter is achieved. The possibility of realizing meso-scale parts with complicated shapes through punching is demonstrated in this work; and some strategies are suggested for improvement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The degree to which the lithosphere and mantle are coupled and contribute to surface deformation beneath continental regions remains a fundamental question in the field of geodynamics. Here we use a new approach with a surface deformation field constrained by GPS, geologic, and seismicity data, together with a lithospheric geodynamic model, to solve for tractions inferred to be generated by mantle convection that (1) drive extension within interior Alaska generating southward directed surface motions toward the southern convergent plate boundary, (2) result in accommodation of the relative motions between the Pacific and North America in a comparatively small zone near the plate boundary, and (3) generate the observed convergence within the North American plate interior in the Mackenzie mountains in northwestern Canada. The evidence for deeper mantle influence on surface deformation beneath a continental region suggests that this mechanism may be an important contributing driver to continental plate assemblage and breakup.