70 resultados para In-vehicle distraction
em Indian Institute of Science - Bangalore - Índia
Resumo:
It is observed that general explicit guidance schemes exhibit numerical instability close to the injection point. This difficulty is normally attributed to the demand for exact injection which, in turn, calls for finite corrections to be enforced in a relatively short time. The deviations in vehicle state which need corrective maneuvers are caused by the off-nominal operating conditions. Hence, the onset of terminal instability depends on the type of off-nominal conditions encountered. The proposed separate terminal guidance scheme overcomes the above difficulty by minimizing a quadratic penalty on injection errors rather than demanding an exact injection. There is also a special requirement in the terminal phase for the faster guidance computations. The faster guidance computations facilitate a more frequent guidance update enabling an accurate terminal thrust cutoff. The objective of faster computations is realized in the terminal guidance scheme by employing realistic assumptions that are accurate enough for a short terminal trajectory. It is observed from simulations that one of the guidance parameters (P) related to the thrust steering angular rates can indicate the onset of terminal instability due to different off-nominal operating conditions. Therefore, the terminal guidance scheme can be dynamically invoked based on monitoring of deviations in the lone parameter P.
Resumo:
We study the steady turn behaviours of some light motorcycle models on circular paths, using the commercial software package ADAMS-Motorcycle. Steering torque and steering angle are obtained for several path radii and a range of steady forward speeds. For path radii much greater than motorcycle wheelbase, and for all motorcycle parameters including tyre parameters held fixed, dimensional analysis can predict the asymptotic behaviour of steering torque and angle. In particular, steering torque is a function purely of lateral acceleration plus another such function divided by path radius. Of these, the first function is numerically determined, while the second is approximated by an analytically determined constant. Similarly, the steering angle is a function purely of lateral acceleration, plus another such function divided by path radius. Of these, the first is determined numerically while the second is determined analytically. Both predictions are verified through ADAMS simulations for various tyre and geometric parameters. In summary, steady circular motions of a given motorcycle with given tyre parameters can be approximately characterised by just one curve for steering torque and one for steering angle.
Resumo:
The goal of optimization in vehicle design is often blurred by the myriads of requirements belonging to attributes that may not be quite related. If solutions are sought by optimizing attribute performance-related objectives separately starting with a common baseline design configuration as in a traditional design environment, it becomes an arduous task to integrate the potentially conflicting solutions into one satisfactory design. It may be thus more desirable to carry out a combined multi-disciplinary design optimization (MDO) with vehicle weight as an objective function and cross-functional attribute performance targets as constraints. For the particular case of vehicle body structure design, the initial design is likely to be arrived at taking into account styling, packaging and market-driven requirements. The problem with performing a combined cross-functional optimization is the time associated with running such CAE algorithms that can provide a single optimal solution for heterogeneous areas such as NVH and crash safety. In the present paper, a practical MDO methodology is suggested that can be applied to weight optimization of automotive body structures by specifying constraints on frequency and crash performance. Because of the reduced number of cases to be analyzed for crash safety in comparison with other MDO approaches, the present methodology can generate a single size-optimized solution without having to take recourse to empirical techniques such as response surface-based prediction of crash performance and associated successive response surface updating for convergence. An example of weight optimization of spaceframe-based BIW of an aluminum-intensive vehicle is given to illustrate the steps involved in the current optimization process.
Resumo:
This work aims at providing an effective parking management system by reducing the drivers' searching time for vacant car-parking space, in turn improving the traffic flow in the car park areas. This is achieved by the use of Fiber Bragg Grating Sensor (FBG) sensor instrumentation in vehicle parking management system. Present work involves embedding an array of FBG sensors underground in the parking space, then determining the strain changes on the FBG sensor due to load applied by the vehicle parked in the parking space, occupancy of the parking space is determined. To validate the FBG sensor parking management system, three most common cases have been considered. This closed loop FBG parking management system can give real-time feed-back to space-guidance display board helping the driver in maneuvering the vehicle to the appropriate parking space. The proposed technique offers optimized usage of parking space for the various segments of cars and also facilitates in a conjoined automated billing system, as compared to conventional method of parking systems.
Resumo:
Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants. These multi-occupant models can be formulated in a modular manner and solved efficiently using MATLAB/SIMULINK for a given transient road input. The vehicle model and the occupant model are independently verified by favorably comparing computed dynamic responses with published data. A number of cases with different dispositions of occupants in a small car are analyzed using the current modular approach thereby underscoring its potential for efficient ride quality assessment and design of suspension systems.
Resumo:
Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.
Resumo:
With the objective of better understanding the significance of New Car Assessment Program (NCAP) tests conducted by the National Highway Traffic Safety Administration (NHTSA), head-on collisions between two identical cars of different sizes and between cars and a pickup truck are studied in the present paper using LS-DYNA models. Available finite element models of a compact car (Dodge Neon), midsize car (Dodge Intrepid), and pickup truck (Chevrolet C1500) are first improved and validated by comparing theanalysis-based vehicle deceleration pulses against corresponding NCAP crash test histories reported by NHTSA. In confirmation of prevalent perception, simulation-bascd results indicate that an NCAP test against a rigid barrier is a good representation of a collision between two similar cars approaching each other at a speed of 56.3 kmph (35 mph) both in terms of peak deceleration and intrusions. However, analyses carried out for collisions between two incompatible vehicles, such as an Intrepid or Neon against a C1500, point to the inability of the NCAP tests in representing the substantially higher intrusions in the front upper regions experienced by the cars, although peak decelerations in cars arc comparable to those observed in NCAP tests. In an attempt to improve the capability of a front NCAP test to better represent real-world crashes between incompatible vehicles, i.e., ones with contrasting ride height and lower body stiffness, two modified rigid barriers are studied. One of these barriers, which is of stepped geometry with a curved front face, leads to significantly improved correlation of intrusions in the upper regions of cars with respect to those yielded in the simulation of collisions between incompatible vehicles, together with the yielding of similar vehicle peak decelerations obtained in NCAP tests.
Resumo:
The worldwide research in nanoelectronics is motivated by the fact that scaling of MOSFETs by conventional top down approach will not continue for ever due to fundamental limits imposed by physics even if it is delayed for some more years. The research community in this domain has largely become multidisciplinary trying to discover novel transistor structures built with novel materials so that semiconductor industry can continue to follow its projected roadmap. However, setting up and running a nanoelectronics facility for research is hugely expensive. Therefore it is a common model to setup a central networked facility that can be shared with large number of users across the research community. The Centres for Excellence in Nanoelectronics (CEN) at Indian Institute of Science, Bangalore (IISc) and Indian Institute of Technology, Bombay (IITB) are such central networked facilities setup with funding of about USD 20 million from the Department of Information Technology (DIT), Ministry of Communications and Information Technology (MCIT), Government of India, in 2005. Indian Nanoelectronics Users Program (INUP) is a missionary program not only to spread awareness and provide training in nanoelectronics but also to provide easy access to the latest facilities at CEN in IISc and at IITB for the wider nanoelectronics research community in India. This program, also funded by MCIT, aims to train researchers by conducting workshops, hands-on training programs, and providing access to CEN facilities. This is a unique program aiming to expedite nanoelectronics research in the country, as the funding for projects required for projects proposed by researchers from around India has prior financial approval from the government and requires only technical approval by the IISc/ IITB team. This paper discusses the objectives of INUP, gives brief descriptions of CEN facilities, the training programs conducted by INUP and list various research activities currently under way in the program.
Resumo:
A controller design for vibration control and alignment maintenance at critical location is developed in a generic launch vehicle whose equipment bay (EB) houses the main inertial platform. The controller uses active control to reduce the attitude disturbance in the attitude at the EB due to elastic deformation. The vibration energy is redistributed by the technique of vibration confinement, which enables the response at the EB to reach its steady state faster in the remaining portion of the structure. (AIAA)
Resumo:
Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.
Resumo:
A role for oestrogen in regulating fluid reabsorption in the monkey epididymis was recently demonstrated. Here, these Studies are extended to identify potential oestrogen-regulated proteins in the cauda region of monkey epididymis treated with vehicle and oestrogen receptor antagonist (ICI 182780). Two-dimensional electrophoretic analysis was used to identify the proteins. The results indicated down-regulation of WNT4 in the ICI-182780-treated monkey cauda. In addition. the Wnt4f mRNA concentration was also reduced in the caput regions of ICI-182780-treated rats and oestrogen receptor knockout mice. WNT4 is a key regulator of gonadal differentiation in humans and mice and plays a pivotal role in early mouse embryogenesis. The results of the present Study establish the presence of WNT4 in the monkey epididymis and its regulation by oestrogen, and Suggest a role for WNT4 in maintaining epididymal homeostasis.
Resumo:
he induced current and voltage on the skin of an airborne vehicle due to the coupling of external electromagnetic field could be altered in the presence of ionized exhaust plume. So in the present work, a theoretical analysis is done to estimate the electrical parameters such as electrical conductivity and permittivity and their distribution in the axial and radial directions of the exhaust plume of an airborne vehicle. The electrical conductivity depends on the distribution of the major ionic species produced from the propellant combustion. In addition it also depends on temperature and pressure distribution of the exhaust plume as well as the generated shock wave. The chemically reactive rocket exhaust flow is modeled in two stages. The first part is simulated from the combustion chamber to the throat of the supersonic nozzle by using NASA Chemical Equilibrium with Application (CEA) package and the second part is simulated from the nozzle throat to the downstream of the plume by using a commercial Computational Fluid Dynamics (CFD) solver. The contour plots of the exhaust parameters are presented. Eight barrel shocks which influence the distribution of the vehicle exhaust parameters are obtained in this simulation. The computed peak value of the electrical conductivity of the plume is 0.123 S/m and the relative permittivity varies from 0.89 to 0.99. The attenuation of the microwave when it is passing through the conducting exhaust plume has also been presented.
Resumo:
A mechanics based linear analysis of the problem of dynamic instabilities in slender space launch vehicles is undertaken. The flexible body dynamics of the moving vehicle is studied in an inertial frame of reference, including velocity induced curvature effects, which have not been considered so far in the published literature. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic forces and the propulsive thrust of the vehicle. The effects of the coupling between the combustion process (mass variation, developed thrust etc.) and the variables involved in the flexible body dynamics (displacements and velocities) are clearly brought out. The model is one-dimensional, and it can be employed to idealised slender vehicles with complex shapes. Computer simulations are carried out using a standard eigenvalue problem within h-p finite element modelling framework. Stability regimes for a vehicle subjected to propulsive thrust are validated by comparing the results from published literature. Numerical simulations are carried out for a representative vehicle to determine the instability regimes with vehicle speed and propulsive thrust as the parameters. The phenomena of static instability (divergence) and dynamic instability (flutter) are observed. The results at low Mach number match closely with the results obtained from previous models published in the literature.
Resumo:
This paper presents a Dubins model based strategy to determine the optimal path of a Miniature Air Vehicle (MAV), constrained by a bounded turning rate, that would enable it to fly along a given straight line, starting from an arbitrary initial position and orientation. The method is then extended to meet the same objective in the presence of wind which has a magnitude comparable to the speed of the MAV. We use a modification of the Dubins' path method to obtain the complete optimal solution to this problem in all its generality.