10 resultados para Impact evaluation

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advanced composite structural components made up of Carbon Fibre Reinforced Polymers (CFRP) used in aerospace structures such as in Fuselage, Leading & Trailing edges of wing and tail, Flaps, Elevator, Rudder and entire wing structures encounter most critical type of damage induced by low velocity impact (<10 m/s) loads. Tool dropped during maintenance & service,and hailstone impacts on runways are common and unavoidable low-velocity impacts. These lowvelocity impacts induce defects such as delaminations, matrix cracking and debonding in the layered material, which are sub-surface in nature and are barely visible on the surface known as Barely Visible Impact Damage (BVID). These damages may grow under service load, leading to catastrophic failure of the structure. Hence detection, evaluation and characterization of these types of damage is of major concern in aerospace industries as the life of the component depends on the size and shape of the damage.In this paper, details of experimental investigations carried out and results obtained from a low-velocity impact of 30 Joules corresponding to the hailstone impact on the wing surface,simulated on the 6 mm CFRP laminates using instrumented drop-weight impact testing machine are presented. The Ultrasound C-scan and Infrared thermography imaging techniques were utilized extensively to detect, evaluate and characterize impact damage across the thickness of the laminates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrasonic C-Scan is used very often to detect flaws and defects in the composite components resulted during fabrication and damages resulting from service conditions. Evaluation and characterization of defects and damages of composites require experience and good understanding of the material as they are distinctly different in composition and behavior as compared to conventional metallic materials. The failure mechanisms in composite materials are quite complex. They involve the interaction of matrix cracking, fiber matrix interface debonding, fiber pullout, fiber fracture and delamination. Generally all of them occur making the stress and failure analysis very complex. Under low-velocity impact loading delamination is observed to be a major failure mode. In composite materials the ultrasonic waves suffer high acoustic attenuation and scattering effect, thus making data interpretation difficult. However these difficulties can be overcome to a greater extent by proper selection of probe, probe parameter settings like pulse width, pulse amplitude, pulse repetition rate, delay, blanking, gain etc., and data processing which includes image processing done on the image obtained by the C-Scan.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The basic objective in the present study is to show that for the most common configuration of an impactor system, an accelerometer cannot exactly reproduce the dynamic response of a specimen subject to impact loading. Assessment of the accelerometer mounted in a drop-weight impactor setup for an axially loaded specimen is done with the aid of an equivalent lumped parameter model (LPM) of the setup. A steel hat-type specimen under the impact loading is represented as a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. A suitable numerical approach has been used to solve the non-linear governing equations for a 3 degrees-of-freedom system in a piece-wise linear manner. The numerical solution following an explicit time integration scheme is used to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the accelerometer, however, predicts a response that qualitatively matches the assumed load–displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inventory Management (IM) plays a decisive role in the enhancement of efficiency and competitiveness of manufacturing enterprises. Therefore, major manufacturing enterprises are following IM practices as a strategy to improve efficiency and achieve competitiveness. However, the spread of IM culture among Small and Medium Enterprises (SMEs) is limited due to lack of initiation, expertise and financial limitations in developed countries, leave alone developing countries. With this backdrop, this paper makes an attempt to ascertain the role and importance of IM practices and performance of SMEs in the machine tools industry of Bangalore, India. The relationship between inventory management practices and inventory cost are probed based on primary data gathered from 91 SMEs. The paper brings out that formal IM practices have a positive impact on the inventory performance of SMEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tn the current set of investigations foam sandwich panels and some components of an aircraft comprising of two layer Glass Fiber Reinforced Plastic(GFRP) face sheets of thickness 1mm each with polyurethene foam as filler of thickness 8mm were examined for detection of debonds and defects. Known defects were introduced in the panels in the form of teflon insert, full foam removal,half foam removal and edge delamination by inserting a teflon and removing it after curing. Two such panels were subjected to acoustic impact and analysis was carried out in both time and frequency domains. These panels were ultrasonically scanned to obtain C-SCAN images as reference to evaluate Acoustic Impact Test (AIT) results. In addition both Fokker bond testing and AIT(woodpecker) were carried out on the same panels and also some critical joints on the actual component. The results obtained from these tests are presented and discussed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sixteen irrigation subsystems of the Mahi Bajaj Sagar Project, Rajasthan, India, are evaluated and selection of the most suitable/best is made using data envelopment analysis (DEA) in both deterministic and fuzzy environments. Seven performance-related indicators, namely, land development works (LDW), timely supply of inputs (TSI), conjunctive use of water resources (CUW), participation of farmers (PF), environmental conservation (EC), economic impact (EI) and crop productivity (CPR) are considered. Of the seven, LDW, TSI, CUW, PF and EC are considered inputs, whereas CPR and EI are considered outputs for DEA modelling purposes. Spearman rank correlation coefficient values are also computed for various scenarios. It is concluded that DEA in both deterministic and fuzzy environments is useful for the present problem. However, the outcome of fuzzy DEA may be explored for further analysis due to its simple, effective data and discrimination handling procedure. It is inferred that the present study can be explored for similar situations with suitable modifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advances in technology, seismological theory, and data acquisition, a number of high-resolution seismic tomography models have been published. However, discrepancies between tomography models often arise from different theoretical treatments of seismic wave propagation, different inversion strategies, and different data sets. Using a fixed velocity-to-density scaling and a fixed radial viscosity profile, we compute global mantle flow models associated with the different tomography models and test the impact of these for explaining surface geophysical observations (geoid, dynamic topography, stress, and strain rates). We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the mantle circulation model, which accounts for the primary flow-coupling features associated with density-driven mantle flow. Our results show that the seismic tomography models of S40RTS and SAW642AN provide a better match with surface observables on a global scale than other models tested. Both of these tomography models have important similarities, including upwellings located in Pacific, Eastern Africa, Iceland, and mid-ocean ridges in the Atlantic and Indian Ocean and downwelling flows mainly located beneath the Andes, the Middle East, and central and Southeast Asia.