35 resultados para Imaginary wars and battles.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Transparent glasses in the composition BaO-0.5Li(2)O-4.5B(2)O(3) (BLBO) were fabricated via the conventional melt-quenching technique. X-ray powder diffraction combined with differential scanning calorimetric (DSC) studies carried out on the as-quenched samples confirmed their amorphous and glassy nature, respectively. The crystallization behavior of these glasses has been studied by isothermal and nonisothermal methods using DSC. Crystallization kinetic parameters were evaluated from the Johnson-Mehl-Avrami equation. The value of the Avrami exponent (n) was found to be 3.6 +/- 0.1, suggesting that the process involves three-dimensional bulk crystallization. The average value of activation energy associated with the crystallization of BLBO glasses was 317 +/- 10 kJ/mol. Transparent glass-ceramics were fabricated by controlled heat-treatment of the as-quenched glasses at 845 K/40 min. The dielectric constants for BLBO glasses and glass-ceramics in the 100 Hz-10 MHz frequency range were measured as a function of the temperature (300-925 K). The electrical relaxation and dc conductivity characteristics were rationalized using electric modulus formalism. The imaginary part of the electric modulus spectra was modeled using an approximate solution of the Kohlrausch-Williams-Watts relation. The temperature-dependent behavior of stretched exponent (beta) was discussed for the as-quenched and heat-treated BLBO glasses.
Resumo:
The Shifman-Vainshtein-Zakharov method of determining the eigenvalues and coupling strengths, from the operator product expansion, for the current correlation functions is studied in the nonrelativistic context, using the semiclassical expansion. The relationship between the low-lying eigenvalues, and the leading corrections to the imaginary-time Green function is elucidated by comparing systems which have almost identical spectra. In the case of an anharmonic oscillator it is found that with the procedure stated in the paper, that inclusion of more terms to the asymptotic expansion does not show any simple trend towards convergence to the exact values. Generalization to higher partial waves is given. In particular for the P-level of the oscillator, the procedure gives poorer results than for the S-level, although the ratio of the two comes out much better.
Resumo:
Magnetron sputtering is a promising technique for the growth of oxide materials including ZnO, which allows deposition of films at low temperatures with good electrical properties. The current-voltage (I-P) characteristics of An Schottky contacts on magnetron sputtered ZnO, films have been measured over a temperature range of 278-358K. Both effective barrier height (phi(B,eff)) and ideality factor (n) are found to be a function of temperature, and this behavior has been interpreted on the basis of a Gaussian distribution of barrier heights due to barrier height inhomogeneities that prevail at the interface. Density of states (DOS) near the Fermi level is determined using a model based on the space charge limited current (SCLC). The dispersion in both real and imaginary parts of the dielectric constant at low frequencies, with increase in temperature is attributed to the space charge effect. Complex impedance plots exhibited two semicircles, which corresponds to bulk grains and the grain boundaries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thin films of ZrO2 were prepared by reactive magnetron sputtering. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity and packing density. The root mean square roughness of the sample observed from atomic force microscope is about 5.75 nm which is comparable to the average grain size of the thin film which is about 6 nm obtained from X-ray diffraction. The film annealed at 873 K exhibits an optical band gap of around 4.83 eV and shows +4 oxidation state of zirconium indicating fully oxidized zirconium, whereas higher annealing temperatures lead to oxygen deficiency in the films and this is reflected in their properties. A discontinuity in the imaginary part of the AC conductivity was observed in the frequency range of tens of thousands of Hz, where as, the real part does not show such behavior.
Resumo:
Transparent glasses of various compositions in the system (100 -x)(Li2B4O7)-x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). X-ray powder diffraction studies confirmed the as-quenched glasses to be amorphous and the heat-treated to be nanocrystalline. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the size of the crystallites to be in the nano-range and confirmed the phase to be that of Ba5Li2Ti2Nb8O30 (BLTN) which was, initially, identified by X-ray powder diffraction. The frequency, temperature and compositional dependence of the dielectric constant and the electrical conductivity of the glasses and glass nanocrystal composites were investigated in the 100 Hz to 10 MHz frequency range. Electrical relaxations were analyzed using the electric modulus formalisms. The imaginary part of electric modulus spectra was modeled using an approximate solution of Kohlrausch-Williams-Watts relation. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Upper bounds at the weak scale are obtained for all lambda(ij)lambda(im) type product couplings of the scalar leptoquark model which may affect K-0 - (K) over bar (0), B-d - (B) over bar (d), and B-s - (B) over bar (s) mixing, as well as leptonic and semileptonic K and B decays. Constraints are obtained for both real and imaginary parts of the couplings. We also discuss the role of leptoquarks in explaining the anomalously large CP-violating phase in B-s - (B) over bar (s) mixing.
Resumo:
Crystalline Bi5NbO10 nanoparticles have been achieved through a modified sol–gel process using a mixture of ethylenediamine and ethanolamine as a solvent. The Bi5NbO10 nanoparticles were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DSC/TG), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and Raman spectroscopy. The results showed that well-dispersed 5–60 nm Bi5NbO10 nanoparticles were prepared through heat-treating the precursor at 650 °C and the high density pellets were obtained at temperatures lower than those commonly employed. The frequency and temperature dependence of the dielectric constant and the electrical conductivity of the Bi5NbO10 solid solutions were investigated in the 0.1 Hz to 1 MHz frequency range. Two distinct relaxation mechanisms were observed in the plots of dielectric loss and the imaginary part of impedance (Z″) versus frequency in the temperature range of 200–350 °C. The dielectric constant and the loss in the low frequency regime were electrode dependent. The ionic conductivity of Bi5NbO10 solid solutions at 700 °C is 2.86 Ω−1 m−1 which is in same order of magnitude for Y2O3-stabilized ZrO2 ceramics at same temperature. These results suggest that Bi5NbO10 is a promising material for an oxygen ion conductor.
Resumo:
We report Extended X-ray Absorption Fine Structure and anelastic spectroscopy measurements on on hole doped manganese oxides La1-xCaxMnO3 which present the colossal magnetoresistance effect. EXAFS measurements were realized both in the absence and presence of an applied magnetic field of 1.1 Tesla, in a wide temperature range (between 330 and 77 K) and at various dopings (x = 0.25 and x = 0.33). The magnetic field orders the magnetic moments so favouring the electron mobility and the reduction of Mn-O octahedra distortions. We observe the presence of four short and two long Mn-O distances (1.93 and 2.05 Angstrom respectively) above and also below the metal-insulator phase transition. The overall distortion decreases but does not completely disappear in the metallic phase suggesting the possible coexistence of metallic and insulating regions at low temperatures. The magnetic field reduces the lattice distortions showing evidence of a microscopic counterpart of the macroscopic colossal magnetoresistance. We also present preliminary anelastic relaxation spectra in a wide temperature range from 900 K to 1 K on a sample with x = 0.40, in order to study the structural phase transitions and the lattice dynamics. A double peak has been observed at the metal-insulator transition in the imaginary part of Young's modulus. This double peak indicates that the metal-insulator transition could be a more complex phenomenon than a simple second order phase transition. In particular the peak at lower temperatures can be connected with the possible presence of inhomogeneous phase structures. Another intense dissipation peak has been observed corresponding to the structural orthorhombic-trigonal transition around 750 K.
Resumo:
Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets were performed on a series of ion-molecule and ion pair-molecule complexes for the H2O + LiCN system. Stabilisation energies (with counter-poise corrections), geometrical parameters, internal force constants and harmonic vibrational frequencies were evaluated for 16 structures of interest. Although the interaction energies are smaller, the geometries and relative stabilities of the monohydrated contact ion pair are reminiscent of those computed for the complexes of the individual ions. Thus, interaction of the oxygen lone pair with lithium leads to a highly stabilised C2v structure, while the coordination of water to the cyanide ion involves a slightly non-linear hydrogen bond. Symmetrical bifurcated structures are computed to be saddle points on the potential energy surface, and to have an imaginary frequency for the rocking mode of the water molecule. On optimisation the geometries of the solvent shared ion pair structures (e.g. Li+cdots, three dots, centered OH2cdots, three dots, centered CN−) revealed a proton transfer from the water molecule leading to hydrogen bonded forms such as Li-O-Hcdots, three dots, centered HCN. The variation in the force constants and harmonic frequencies in the various structures considered are discussed in terms of ion-molecular and ion pair-molecule interactions.
Resumo:
We utilize top polarization in the process e(+)e(-) -> t (t) over bar at the International Linear Collider ( ILC) with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10(-3) TeV-2 for real and imaginary parts of both scalar and tensor couplings at root s = 500 and 800 GeV with an integrated luminosity of 500 fb(-1) and completely polarized beams are shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.
Resumo:
Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solvent-shared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.
Resumo:
Transparent glasses in the system 0.5Li(2)O-0.5M(2)O-2B(2)O(3) (M = Li, Na and K) were fabricated via the conventional melt quenching technique. The amorphous and glassy nature of the samples was confirmed via the X-ray powder diffraction and the differential scanning calorimetry, respectively. The frequency and temperature dependent characteristics of the dielectric relaxation and the electrical conductivity were investigated in the 100 Hz-10 MHz frequency range. The imaginary part of the electric modulus spectra was modeled using an approximate solution of Kohrausch-Williams-Watts relation. The stretching exponent, (3, was found to be temperature independent for 0.5Li(2)O-0.5Na(2)O-2B(2)O(3) (LNBO) glasses. The activation energy associated with DC conduction was found to be higher (1.25 eV) for 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) glasses than that of the other glass systems under study. This is attributed to the mixed cation effect. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Reflection electron energy-loss spectra are reported for the family of compounds TiOx over the entire homogeneity range (0.8 < a: < 1.3). The spectra exhibit a plasmon feature on the low-energy side, while several interband transitions are prominent at higher energies. The real and imaginary parts of dielectric functions and optical conductivity for these compounds are determined using the Kramers-Kronig analysis. The results exhibit systematic behavior with varying oxygen stoichiometry.
Resumo:
Geometry and energy of argon clusters confined in zeolite NaCaA are compared with those of free clusters. Results indicate the possible existence of magic numbers among the confined clusters. Spectra obtained from instantaneous normal mode analysis of free and confined clusters give a larger percentage of imaginary frequencies for the latter indicating that the confined cluster atoms populate the saddle points of the potential energy surface significantly. The variation of the percentage of imaginary frequencies with temperature during melting is akin to the variation of other properties. It is shown that confined clusters might exhibit inverse surface melting, unlike medium-to-large-sized free clusters that exhibit surface melting. Configurational-bias Monte Carte (CBMC) simulations of n-alkanes in zeolites Y and A are reported. CBMC method gives reliable estimates of the properties relating to the conformation of molecules. Changes in the conformational properties of n-butane and other longer n-alkanes such as n-hexane and n-heptane when they are confined in different zeolites are presented. The changes in the conformational properties of n-butane and n-hexane with temperature and concentration is discussed. In general, in zeolite Y as well as A, there is significant enhancement of the gauche population as compared to the pure unconfined fluid.
Resumo:
Lanthanum doped lead titanate (PLT) thin films were identified as the most potential candidates for the pyroelectric and memory applications. PLT thin films were deposited on Pt coated Si by excimer laser ablation technique. The polarization behavior of PLT thin films has been studied over a temperature range of 300 K to 550 K. A universal power law relation was brought into picture to explain the frequency dependence of ac conductivity. At higher frequency region ac conductivity of PLT thin films become temperature independent. The temperature dependence of ac conductivity and the relaxation time is analyzed in detail. The activation energy obtained from the ac conductivity was attributed to the shallow trap controlled space charge conduction in the bulk of the sample. The impedance analysis for PLT thin films were also performed to get insight of the microscopic parameters, like grain, grain boundary, and film-electrode interface etc. The imaginary component of impedance Z" exhibited different peak maxima at different temperatures. Different types of mechanisms were analyzed in detail to explain the dielectric relaxation behavior in the PLT thin films.