216 resultados para Image classification
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.
Resumo:
This paper investigates a new Glowworm Swarm Optimization (GSO) clustering algorithm for hierarchical splitting and merging of automatic multi-spectral satellite image classification (land cover mapping problem). Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to classify all the basic land cover classes of an urban region in a satisfactory manner. In unsupervised classification methods, the automatic generation of clusters to classify a huge database is not exploited to their full potential. The proposed methodology searches for the best possible number of clusters and its center using Glowworm Swarm Optimization (GSO). Using these clusters, we classify by merging based on parametric method (k-means technique). The performance of the proposed unsupervised classification technique is evaluated for Landsat 7 thematic mapper image. Results are evaluated in terms of the classification efficiency - individual, average and overall.
Resumo:
This paper discusses an approach for river mapping and flood evaluation based on multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation for extracting water-covered regions. Analysis of MODIS satellite images is applied in three stages: before flood, during flood and after flood. Water regions are extracted from the MODIS images using image classification (based on spectral information) and image segmentation (based on spatial information). Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification (SVM and ANN) and region-based image segmentation is an accurate and reliable approach for the extraction of water-covered regions. (c) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Among the multiple advantages and applications of remote sensing, one of the most important uses is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this letter, we propose a novel bat algorithm (BA)-based clustering approach for solving crop type classification problems using a multispectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multispectral satellite image and one benchmark data set from the University of California, Irvine (UCI) repository are used to demonstrate the robustness of the proposed algorithm. The performance of the BA is compared with two other nature-inspired metaheuristic techniques, namely, genetic algorithm and particle swarm optimization. The performance is also compared with the existing hybrid approach such as the BA with K-means. From the results obtained, it can be concluded that the BA can be successfully applied to solve crop type classification problems.
Resumo:
Remote sensing provides a lucid and effective means for crop coverage identification. Crop coverage identification is a very important technique, as it provides vital information on the type and extent of crop cultivated in a particular area. This information has immense potential in the planning for further cultivation activities and for optimal usage of the available fertile land. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Further, image classification forms the core of the solution to the crop coverage identification problem. No single classifier can prove to satisfactorily classify all the basic crop cover mapping problems of a cultivated region. We present in this paper the experimental results of multiple classification techniques for the problem of crop cover mapping of a cultivated region. A detailed comparison of the algorithms inspired by social behaviour of insects and conventional statistical method for crop classification is presented in this paper. These include the Maximum Likelihood Classifier (MLC), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) techniques. The high resolution satellite image has been used for the experiments.
Resumo:
This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.
Resumo:
Land cover (LC) and land use (LU) dynamics induced by human and natural processes play a major role in global as well as regional patterns of landscapes influencing biodiversity, hydrology, ecology and climate. Changes in LC features resulting in forest fragmentations have posed direct threats to biodiversity, endangering the sustainability of ecological goods and services. Habitat fragmentation is of added concern as the residual spatial patterns mitigate or exacerbate edge effects. LU dynamics are obtained by classifying temporal remotely sensed satellite imagery of different spatial and spectral resolutions. This paper reviews five different image classification algorithms using spatio-temporal data of a temperate watershed in Himachal Pradesh, India. Gaussian Maximum Likelihood classifier was found to be apt for analysing spatial pattern at regional scale based on accuracy assessment through error matrix and ROC (receiver operating characteristic) curves. The LU information thus derived was then used to assess spatial changes from temporal data using principal component analysis and correspondence analysis based image differencing. The forest area dynamics was further studied by analysing the different types of fragmentation through forest fragmentation models. The computed forest fragmentation and landscape metrics show a decline of interior intact forests with a substantial increase in patch forest during 1972-2007.
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
The efficacy of the multifractal spectrum as a tool for characterizing images has been studied. This spectrum has been computed for digitized images of the nucleus of human cervical cancer cells and it was observed that the entire spectrum is almost fully reproduced for a normal cell while only the right half (q<0) of the spectrum is reproduced for a cancerous cell. Cells in stages in between the two extremes show a shortening of the left half of the spectrum proportional to their condition. The extent of this shortening has been found to be sufficient to permit a classification between three classes of cells at varying distances from a basal cancerous layer-the superficial cells, the intermediate cells and the parabasal cells. This technique may be used for automatic screening of the population while also indicating the stage of malignancy
Resumo:
The widely used Bayesian classifier is based on the assumption of equal prior probabilities for all the classes. However, inclusion of equal prior probabilities may not guarantee high classification accuracy for the individual classes. Here, we propose a novel technique-Hybrid Bayesian Classifier (HBC)-where the class prior probabilities are determined by unmixing a supplemental low spatial-high spectral resolution multispectral (MS) data that are assigned to every pixel in a high spatial-low spectral resolution MS data in Bayesian classification. This is demonstrated with two separate experiments-first, class abundances are estimated per pixel by unmixing Moderate Resolution Imaging Spectroradiometer data to be used as prior probabilities, while posterior probabilities are determined from the training data obtained from ground. These have been used for classifying the Indian Remote Sensing Satellite LISS-III MS data through Bayesian classifier. In the second experiment, abundances obtained by unmixing Landsat Enhanced Thematic Mapper Plus are used as priors, and posterior probabilities are determined from the ground data to classify IKONOS MS images through Bayesian classifier. The results indicated that HBC systematically exploited the information from two image sources, improving the overall accuracy of LISS-III MS classification by 6% and IKONOS MS classification by 9%. Inclusion of prior probabilities increased the average producer's and user's accuracies by 5.5% and 6.5% in case of LISS-III MS with six classes and 12.5% and 5.4% in IKONOS MS for five classes considered.
Resumo:
This paper presents a new hierarchical clustering algorithm for crop stage classification using hyperspectral satellite image. Amongst the multiple benefits and uses of remote sensing, one of the important application is to solve the problem of crop stage classification. Modern commercial imaging satellites, owing to their large volume of satellite imagery, offer greater opportunities for automated image analysis. Hence, we propose a unsupervised algorithm namely Hierarchical Artificial Immune System (HAIS) of two steps: splitting the cluster centers and merging them. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The classification results have been compared with K-means and Artificial Immune System algorithms. From the results obtained, we conclude that the proposed hierarchical clustering algorithm is accurate.
Resumo:
The presence of a large number of spectral bands in the hyperspectral images increases the capability to distinguish between various physical structures. However, they suffer from the high dimensionality of the data. Hence, the processing of hyperspectral images is applied in two stages: dimensionality reduction and unsupervised classification techniques. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The selected dimensions are classified using Niche Hierarchical Artificial Immune System (NHAIS). The NHAIS combines the splitting method to search for the optimal cluster centers using niching procedure and the merging method is used to group the data points based on majority voting. Results are presented for two hyperspectral images namely EO-1 Hyperion image and Indian pines image. A performance comparison of this proposed hierarchical clustering algorithm with the earlier three unsupervised algorithms is presented. From the results obtained, we deduce that the NHAIS is efficient.
Resumo:
Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.
Resumo:
Imaging flow cytometry is an emerging technology that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy. It allows high-throughput imaging of cells with good spatial resolution, while they are in flow. This paper proposes a general framework for the processing/classification of cells imaged using imaging flow cytometer. Each cell is localized by finding an accurate cell contour. Then, features reflecting cell size, circularity and complexity are extracted for the classification using SVM. Unlike the conventional iterative, semi-automatic segmentation algorithms such as active contour, we propose a noniterative, fully automatic graph-based cell localization. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using custom fabricated cost-effective microfluidics-based imaging flow cytometer. The proposed system is a significant development in the direction of building a cost-effective cell analysis platform that would facilitate affordable mass screening camps looking cellular morphology for disease diagnosis. Lay description In this article, we propose a novel framework for processing the raw data generated using microfluidics based imaging flow cytometers. Microfluidics microscopy or microfluidics based imaging flow cytometry (mIFC) is a recent microscopy paradigm, that combines the statistical power of flow cytometry with spatial and quantitative morphology of digital microscopy, which allows us imaging cells while they are in flow. In comparison to the conventional slide-based imaging systems, mIFC is a nascent technology enabling high throughput imaging of cells and is yet to take the form of a clinical diagnostic tool. The proposed framework process the raw data generated by the mIFC systems. The framework incorporates several steps: beginning from pre-processing of the raw video frames to enhance the contents of the cell, localising the cell by a novel, fully automatic, non-iterative graph based algorithm, extraction of different quantitative morphological parameters and subsequent classification of cells. In order to evaluate the performance of the proposed framework, we have successfully classified unstained label-free leukaemia cell-lines MOLT, K562 and HL60 from video streams captured using cost-effective microfluidics based imaging flow cytometer. The cell lines of HL60, K562 and MOLT were obtained from ATCC (American Type Culture Collection) and are separately cultured in the lab. Thus, each culture contains cells from its own category alone and thereby provides the ground truth. Each cell is localised by finding a closed cell contour by defining a directed, weighted graph from the Canny edge images of the cell such that the closed contour lies along the shortest weighted path surrounding the centroid of the cell from a starting point on a good curve segment to an immediate endpoint. Once the cell is localised, morphological features reflecting size, shape and complexity of the cells are extracted and used to develop a support vector machine based classification system. We could classify the cell-lines with good accuracy and the results were quite consistent across different cross validation experiments. We hope that imaging flow cytometers equipped with the proposed framework for image processing would enable cost-effective, automated and reliable disease screening in over-loaded facilities, which cannot afford to hire skilled personnel in large numbers. Such platforms would potentially facilitate screening camps in low income group countries; thereby transforming the current health care paradigms by enabling rapid, automated diagnosis for diseases like cancer.
Resumo:
We consider the problem of deciding whether the output of a boolean circuit is determined by a partial assignment to its inputs. This problem is easily shown to be hard, i.e., co-Image Image -complete. However, many of the consequences of a partial input assignment may be determined in linear time, by iterating the following step: if we know the values of some inputs to a gate, we can deduce the values of some outputs of that gate. This process of iteratively deducing some of the consequences of a partial assignment is called propagation. This paper explores the parallel complexity of propagation, i.e., the complexity of determining whether the output of a given boolean circuit is determined by propagating a given partial input assignment. We give a complete classification of the problem into those cases that are Image -complete and those that are unlikely to be Image complete.